

Gelest

REACTIVE SILICONES: FORGING NEW POLYMER LINKS

MATERIALS FOR:

Adhesives
Binders
Ceramic Coatings
Dielectric Coatings
Encapsulants
Gels
Membranes
Optical Coatings
Photolithography
Polymer Synthesis
Sealants

New!
Expanded Silicone
Macromers

Gelest

Enabling your technology

Functional Silicone Reactivity Guide

REACTIVE SILICONES:

FORGING NEW POLYMER LINKS

Gelest Inc.
11 East Steel Rd.
Morrisville, PA 19067
Phone: (215) 547-1015
Fax: (215) 547-2484
www.gelest.com

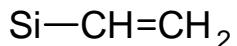
Materials For:

- Adhesives
- Binders
- Ceramic Coatings
- Dielectric Coatings
- Encapsulants
- Gels
- Membranes
- Optical Coatings
- Photolithography
- Polymer Synthesis
- Sealants

Commercial Status - produced on a regular basis for inventory

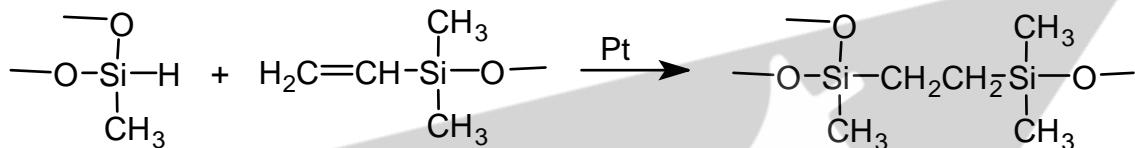
Developmental Status - available to support development and commercialization

Supplement to the Gelest Catalogs, "Silicon Compounds: Silanes and Silicones" and "Metal-Organics for Materials, Polymers and Synthesis," which are available upon request.


TERMS AND CONDITIONS OF SALE

1. (a) Except as expressly stated herein, the seller does not warrant the material covered by this agreement in any manner whatsoever and no warranty, express, implied or statutory, is made by the seller. Seller makes no representation or warranty that the material is merchantable or fit for a particular purpose.
(b) Seller in no event shall be liable for incidental or consequential damages in connection with this contract. Consequential damages shall include loss of use, income or profit.
(c) The maximum liability of the seller or producer, if any, on account of inferior quality, defective condition, delay, unsuccessful reactions, failure to ship or from any other cause shall be to refund if paid, or otherwise credit buyer the purchase price of that part of the material which is subject to the condition or cause on which claim is based.
2. Acceptance of this order is expressly conditioned upon the terms and conditions contained herein and buyer agrees to comply with said terms and conditions unless agreed to in writing by the Seller and Buyer.
3. The terms of sale are net 30 days of the date of the invoice unless otherwise stated. If the financial condition of the Buyer results in the insecurity of the Seller, in its discretion, the Seller may without notice to Buyer postpone delivery of the goods and Seller, at its option, is authorized to change the terms of payment by Buyer. Buyer will incur a finance charge of eighteen percent per annum (1.5% per month) for unpaid invoices beyond the stated terms. Buyer agrees to pay all costs, including but not limited to attorney fees or other expenses of collection resulting from any default by Buyer.
4. Title and risk of loss shall pass to Buyer as soon as the materials delivered on board common carrier or other carrier specified by Buyer at our warehouse or delivered on board common carrier at other specified F.O.B. point.
5. Carrier weights at point of shipment shall govern. Shortages of less than one percent (1%) of the net weight will not be allowed.
6. Buyer will examine and test each shipment on arrival at destination. Any claims against Seller or producer will be waived unless made in writing and received by Seller within fifteen days (15) after the arrival of the material at the destination. No claim shall be allowed for any cause as to material which has been treated or processed in any manner. No material shall be returned for credit by Buyer without prior written consent of Seller.
7. Buyer assumes all risks and liability for results of the use of the material, including any changes made in the composition or form thereof or its use in combination with other materials.
8. The goods sold are for research and development use or for manufacturing use in compliance with EPA regulations. Buyer realizes that, since Seller's products are, unless otherwise stated, intended for research purposes, they may not be on the Toxic Substances Control Act (TSCA) inventory. Buyer assumes responsibility to assure that the products purchased from Seller are approved for use under TSCA, if applicable. The goods are not to be used clinically, pharmaceutically or as a food preparation.
9. Buyer assumes all responsibility for the safe handling and utilization of the goods sold. Buyer is responsible to take all appropriate precautions against possible dangers arising out of any unknown hazard or toxicity of the goods. Buyer has the sole responsibility of disposing of any waste associated with material purchased including containers in full compliance with federal, state, or other regulations.
10. Seller, upon Buyer's request, may furnish technical advice with reference to the use of the material sold hereunder, but it is expressly agreed that there is no obligation to furnish any such advice and, if any such advice is furnished, it shall be given and accepted at Buyer's sole risk. Buyer agrees to indemnify and save harmless Seller from costs, fees or losses resulting from claims or suits brought by third parties claimed to be based upon advice by seller.
11. Seller shall not be held responsible for failure or delay in shipping or delay in manufacture of the goods. Any shipment made by Seller before receipt of written notice from Buyer that the latter cannot accept shipments shall be accepted by Buyer and in any event paid for by Buyer.
12. Prices are subject to change by Seller without notice. Pricing for orders accepted for shipment within sixty days will be invoiced at the price stated at the time of acceptance of the order. On any order or any part of an order actually shipped sixty days or more after the date of acceptance, prices in effect at the time of shipment will apply. Before making any shipment at a price in excess of that stated in the accepted order, Seller will notify Buyer and thereupon Buyer shall have the right to cancel the part of the order to which the increased price applies.
13. Seller makes no express or implied representation that 1) the goods sold do not infringe on any existing or pending patent, or 2) patents covering the goods do not exist, or 3) the goods are sold pursuant to a license held by the Seller under any existing or pending patent. Buyer assumes all responsibility for determining if patents or pending patents exist which cover the goods sold.
14. Seller reserves the right to refuse sale of any materials if the user is unable to demonstrate that professional supervision is available to provide compliance with EPA, OSHA, Right to Know Laws or to handle materials of unknown safety and toxicity potential.
15. This agreement shall be deemed separable as to the materials sold. Buyer may not refuse to accept any lot or portion of the material shipped hereunder on the ground that there has been a failure to deliver any other lot or material if any other lot was nonconforming.
16. All orders are subject to written acceptance and confirmation by the Seller at its Office in Morrisville, Pennsylvania. Changes to the contract shall be made only in writing signed by duly authorized representatives. This contract shall be governed and construed according to the Uniform Commercial Code as adopted in the Commonwealth of Pennsylvania.

PLEASE INQUIRE ABOUT BULK QUANTITIES


CONTENTS

Reactivity Guide for Silicone Fluids	inside front cover
Vinyl Functional Fluids	4
Hydride Functional Fluids	13
Silanol Functional Fluids	17
Amine Functional Fluids	21
Epoxy Functional Fluids.....	25
Carbinol (Hydroxyalkyl) Functional Fluids	28
Methacrylate/Acrylate Functional Fluids	31
Selected Functional Fluids (non-hydrolyzeable)	33
(Isocyanate, Carboxylate, Anhydride, Mercapto, Chloroalkyl)	
Selected Functional Fluids (hydrolyzeable)	35
(Chlorine, Acetoxy, Dimethylamine, Alkoxy)	
Macromers and Monofunctional Terminated Fluids.....	35
Emulsions and Water-borne Reactive Fluids.....	36
Polymeric Alkoxides	42
Silsesquioxanes	45
PolySilazanes and PolySilanes	49
Sibrid® Silicone -Organic Hybrids	50
Specialty Silicon Containing Polymers	52
Vinyl Addition Cure (Catalysts, Inhibitors, Adhesion Promoters)	53
Condensation Cure (Crosslinkers, Catalysts)	55
Activated Cure (Peroxides)	57
Pigments, Reinforcements, Fillers	58
Polymerization Catalysts	59
Product Code Definition	60

Vinyl Functional Polymers

The reactivity of vinyl functional polymers is utilized in two major regimes. Vinyl terminated polymers are employed in **addition cure** systems. The bond forming chemistry is the platinum catalyzed hydrosilylation reaction which proceeds according to the following equation:

Vinylmethylsiloxane copolymers and vinyl T-structure fluids are mostly employed in **peroxide activated cure** systems which involve peroxide induced free radical coupling between vinyl and methyl groups. Concomitant and subsequent reactions take place among methyl groups and between crosslink sites and methyl groups. The initial crosslinking reaction is depicted in the following equation:

Addition Cure (Platinum Cure)

Addition cure chemistry provides an extremely flexible basis for formulating silicone elastomers. An important feature of the cure system is that no byproducts are formed, allowing fabrication of parts with good dimensional stability. Cures below 50°C, Room Temperature Vulcanizing (RTV), cures between 50° and 130°C, Low Temperature Vulcanizing (LTV), and cures above 130°C, High Temperature Vulcanizing (HTV), are all readily achieved by addition cure. The rheology of the systems can also be varied widely, ranging from dip-cures to liquid injection molding (LIM) and conventional heat-cure rubber (HCR) processing. Vinyl-terminated polydimethylsiloxanes with viscosities greater than 200 cSt generally have less than 2% volatiles and form the base polymers for these systems. More typically, base polymers range from 1000 to 60,000 cSt. The crosslinking polymer is generally a methylhydrosiloxane-dimethylsiloxane copolymer with 15-50 mole % methylhydrosiloxane. The catalyst is usually a complex of platinum in alcohol, xylene, divinylsiloxanes or cyclic vinylsiloxanes. The system is usually prepared in two parts. By convention, the A part usually contains the platinum at a level of 5-10 ppm, and the B part usually contains the hydride functional siloxane.

Formulation of addition cure silicones must address the following issues:

Strength- Unfilled silicones have extremely poor mechanical properties and will literally crumble under pressure from a fingernail. The most effective reinforcing filler is hexamethyldisilazane treated fumed silica. Alternatively, if clarity must be maintained, vinyl "Q" reinforcing resins are employed.

Hardness- Higher crosslink density provides higher durometer elastomers. Gels are weakly crosslinked systems and even contain substantial quantities of "free" fluids. In principal, molar equivalents of hydrides react with vinyls. See the section on hydride functional fluids for further information. Also, polymers with vinyl pendant on the chain rather than at chain ends are utilized to modify hardness and compression set.

Consistency- The viscosity of the base polymer and a variety of low surface area fillers ranging from calcium carbonate to precipitated silica are used to control the flow characteristics of silicone elastomers.

Temperature of Cure- Selection of platinum catalysts generally controls the preferred temperature of cure.¹ Platinum in vinylsiloxanes is usually used in room temperature cures. Platinum in cyclic vinylsiloxanes is usually used in high temperature cures. See the Platinum listings in the catalyst section.(p.53)

Work Time (Speed of Cure)- Apart from temperature, moderators (sometimes called retarders) and inhibitors are used to control work time. Moderators slow, but do not stop platinum catalysts. A typical moderator is tetravinyltetramethylcyclotetrasiloxane. Inhibitors stop or "shutdown" platinum catalysts and therefore are fugitive, i.e volatile or decomposed by heat or light (UV). Acetylenic alcohols such as methylisobutynol are volatile inhibitors. Patent literature shows that t-butylhydroperoxide is an effective inhibitor that breaks down at temperatures above 130°.

Low Temperature Properties, Optical Properties- The introduction of vinyl polymers with phenyl groups alters physical properties of elastomers. At levels of 3-4 mole %, phenyl groups improve low temperature properties. At higher levels, they are used to alter refractive index of elastomers, ranging from matching fillers for transparency to optical fiber applications. Unfortunately, increased phenyl substitution lowers mechanical properties of elastomers.

Shelf Life- A fully compounded elastomer is a complex system. Shelf-life can be affected by moisture, differential adsorption of reactive components by fillers and inhibitory effects of trace impurities. Empirical adjustments of catalyst and hydride levels are made to compensate for these effects.

Compounding- All but the lowest consistency elastomers are typically compounded in sigma-blade mixers, planetary mixers, two-roll mills or, for large scale production, twin-screw extruders.

Quick Start Formulation - Transfer and Impression Molding Elastomer

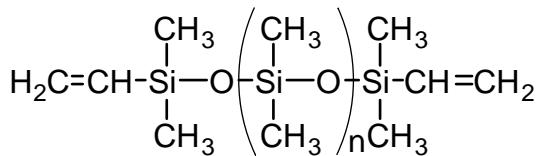
This low strength formulation is useful as a reproductive molding compound. It is presented here because it can be prepared without special equipment and is an instructive starting point for addition cure silicone elastomers.

DMS-V31	1000 cSt vinyl terminated polydimethylsiloxane	100 parts
SIS6962.0	hexamethyldisilazane treated silica	50 parts
HMS-301	methylhydrosiloxane-dimethylsiloxane copolymer	3-4 parts
SIP6830.3	platinum complex solution	150-200ppm

In small portions, work the DMS-V31 into the silica with a spatula. After a uniform dispersion is produced, work in the HMS-301. The blend may be stored in this form. Just prior to use add the platinum solution with an eyedropper and work it in rapidly. Working time is 5-10 minutes. The rate of cure can be retarded by adding tetravinyltetramethylcyclotetrasiloxane (SIT7900.0).

¹L. Lewis et al, J. Molecular Catalysis A: Chem. 104, 293, 1996; J. Inorg. Organomet. Polym., 6, 123, 1996

Platinum Catalysts- see p. 53


Addition Cure Modifiers- see p. 54

Peroxide Activated Cure

Activated cure silicone elastomers are processed by methods consistent with conventional rubbers. These silicone products are referred to as HCRs (heat cured rubbers). The base stocks are high molecular weight linear polydiorganosiloxanes that can be converted from a highly viscous plastic state into a predominantly elastic state by crosslinking. Vinylmethylsiloxane-dimethylsiloxane copolymers of extremely high molecular weights are the typical base stocks for activated cure silicone elastomers. The base stocks are commonly referred to as gums. Gums typically have molecular weights from 500,000 to 900,000 with viscosities exceeding 2,000,000 cSt. Free radical coupling (cure) of vinyl and methyl groups is usually initiated by peroxides at process temperatures of 140°-160°. Generally, peroxide loading is 0.2-1.0%. Following the cure, a post-cure at 25-30° higher temperature removes volatile peroxide decomposition products and stabilizes polymer properties. The most widely used peroxides include dibenzoylperoxide (often as a 50% concentrate in silicone oil), dicumylperoxide (often 40% on calcium carbonate), 2,5-dimethyl-2,5-di-t-butylperoxyhexane and bis(dichlorobenzoyl)peroxide. The last peroxide is particularly recommended for aromatic-containing siloxanes. Terpolymer gums containing low levels of phenyl are used in low temperature applications. At increased phenyl concentrations, they are used in high temperature and radiation resistant applications and are typically compounded with stabilizing fillers such as iron oxide. Phenyl groups reduce cross-linking efficiency of peroxide systems and result in rubbers with lower elasticity. Fluorosilicone materials offer solvent resistance. Lower molecular weight vinylsiloxanes are frequently added to modify processability of base stocks.

While the use of peroxide activated cure chemistry for vinylmethylsiloxanes is well-established for gum rubber stocks, its use is growing in new applications that are comparable to some peroxide cure acrylic systems. Relatively low viscosity vinylmethylsiloxanes and vinyl T-fluids are employed as grafting additives to EPDM elastomers in the wire and cable industry to improve electrical properties. They also form reactive internal lubricants for vulcanizable rubber formulations. At low levels they are copolymerized with vinyl monomers to form surfactants for organosols.

Peroxide Catalysts- see p. 57

Vinyl Terminated PolyDimethylsiloxanes

CAS: [68083-19-2] TSCA

Molecular								
Code	Viscosity	Weight	Wgt % Vinyl	Vinyl - Eq/kg	Density	Price/100g	Price/3kg	Price/16kg
DMS-V00	0.7	186	29	10.9	0.81	\$44.00	\$568.00	
DMS-V03	2-3	500	10-12	3.6-4.3	0.92	\$72.00	\$930.00	
DMS-V05	4-8	800	7-9	2.4-2.9	0.93	\$35.00	\$525.00	
DMS-V21	100	6000	0.8-1.2	0.33-0.37	0.97	\$24.00	\$166.00	\$432.00
DMS-V22	200	9400	0.4-0.6	0.21-0.24	0.97	\$16.00	\$138.00	\$360.00
DMS-V25	500	17,200	0.37-0.43	0.11-0.13	0.97	\$19.00	\$148.00	\$384.00
DMS-V31	1000	28,000	0.18-0.26	0.07-0.10	0.97	\$15.00	\$124.00	\$322.00
DMS-V33	3500	43,000	0.12-0.15	0.05-0.06	0.97	\$19.00	\$148.00	\$384.00
DMS-V35	5000	49,500	0.10-0.13	0.04-0.05	0.97	\$15.00	\$124.00	\$322.00
DMS-V41	10,000	62,700	0.08-0.12	0.03-0.04	0.97	\$19.00	\$148.00	\$384.00
DMS-V42	20,000	72,000	0.07-0.09	0.025-0.030	0.98	\$24.00	\$166.00	\$432.00
DMS-V46	60,000	117,000	0.04-0.06	0.018-0.020	0.98	\$24.00	\$166.00	\$432.00
DMS-V51	100,000	140,000	0.03-0.05	0.016-0.018	0.98	\$29.00	\$200.00	\$590.00
DMS-V52	165,000	155,000	0.03-0.04	0.013-0.016	0.98	\$29.00	\$200.00	\$590.00

These materials are most often employed in 2-part addition cure silicone elastomers.

Reduced Volatility Grades*

DMS-V25R	500	17,200	0.37-0.43	0.11-0.13	0.97	\$65.00	\$520.00
DMS-V35R	5000	49,500	0.10-0.13	0.04-0.05	0.97	\$85.00	\$660.00

*total volatiles, 4 hours @ 150°C; 0.2% maximum

Fumed Silica Reinforced Vinyl Terminated Polydimethylsiloxane

Base Fluid								
Code	Viscosity	Viscosity	% Silica	Vinyl - Eq/Kg	Density	Price/100g	Price/3kg	Price/16kg
DMS-V31S15	300,000	1,000	15-18	0.06	1.1	\$34.00	\$264.00	\$684.00

Precompounded base materials provide access to low durometer formulations without the need for special compounding equipment required to mix fumed silica. The following is a starting-point formulation.

Part A

DMS-V31S15
SIP6831.2

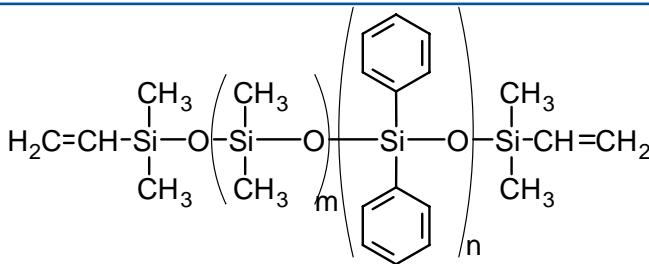
Part B

DMS-V31
HMS-301

Prepare Part A and Part B separately. When ready to cure mix 3 parts A to 1 part B. The mix will cure over 4 hours at room temperature to give the following properties.

Hardness: Elongation

20-30 Shore A


400-450%

Tensile Strength

Tear Strength

3.5 MPa (500 psi)

16N/mm (91ppi)

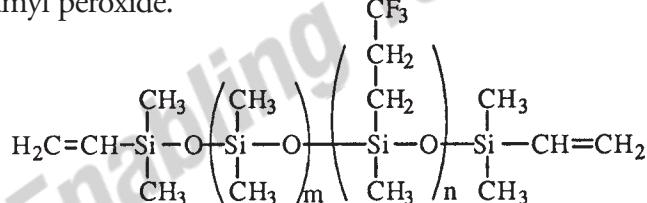
Vinyl Terminated Diphenylsiloxane-Dimethylsiloxane Copolymers CAS: [68951-96-2] TSCA

Code	Mole % Diphenylsiloxane	Viscosity	Molecular Weight	Refractive Index	Price/100g	Price/3kg
PDV-0325	3.0-3.5	500	15,500	1.420	\$38.00	\$304.00
PDV-0331	3.0-3.5	1000	27,000	1.420	\$35.00	\$280.00
PDV-0341	3.0-3.5	10,000	62,000	1.420	\$44.00	\$352.00
PDV-0346	3.0-3.5	60,000	78,000	1.420	\$56.00	\$448.00
PDV-0525	4-6	500	14,000	1.430	\$38.00	\$304.00
PDV-0535	4-6	5000	47,500	1.430	\$38.00	\$304.00
PDV-0541	4-6	10,000	60,000	1.430	\$44.00	\$352.00
PDV-1625	15-17	500	9,500	1.465	\$38.00	\$304.00
PDV-1631	15-17	1000	19,000	1.465	\$38.00	\$304.00
PDV-1635	15-17	5,000	35,300	1.465	\$42.00	\$336.00
PDV-1641	15-17	10,000	55,000	1.465	\$60.00	\$480.00
PDV-2331	22-25	1000-1500	12,500	1.493	\$120.00	\$1080.00
PDV-2335	22-25	4000-5000	23,000	1.493	\$180.00	

COMMERCIAL

Vinyl Terminated polyPhenylMethylsiloxane

CAS: [225927-21-9] TSCA-L

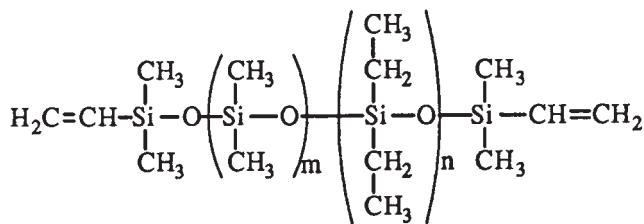

Code	Mole % PhenylMethylsiloxane	Viscosity	Molecular Weight	Refractive Index	Density	Price/100g
PMV-9925	99-100	300-600	2000-3000	1.537	1.11	\$140.00

These materials are most often employed in 2-part addition cure silicone elastomers where special thermal or optical properties are required.

VinylPhenylMethyl Terminated VinylPhenylsiloxane - PhenylMethylsiloxane Copolymer CAS: [8027-82-1] TSCA

Code	Mole % PhenylMethylsiloxane	Viscosity	Molecular Weight	Refractive Index	Density	Price/100g
PPV-3522	30-40	80-150	800-1500	1.530	1.10	\$160.00

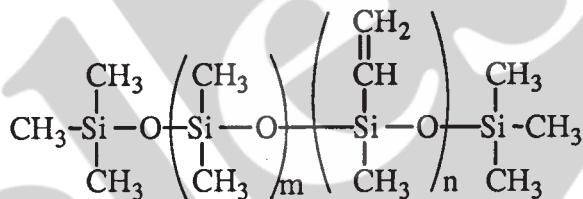
Crosslinks with dicumyl peroxide.


Vinyl Terminated TrifluoropropylMethylsiloxane - Dimethylsiloxane Copolymer CAS: [68951-98-4] TSCA

Code	Mole % CF3CH2CH2MeSiO	Viscosity	Molecular Weight	Specific Gravity	Price/100g	Price/1kg
FMV-4031*	35-45	14,000-18,000	25,000-35,000	1.122	\$90.00	\$540.00

*R.I.: 1.386

Trifluoropropylmethylsiloxane copolymers offer greater solvent resistance (lower hydrocarbon solubility) and lower refractive index than analogous dimethylsiloxane homopolymers.


PLEASE INQUIRE ABOUT BULK QUANTITIES

Vinyl Terminated Diethylsiloxane - Dimethylsiloxane Copolymers

Code	Mole % Diethylsiloxane	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100 g
EDV-2022	18-22	150-300	8000-12,000	1.413	0.953	\$180.00

Diethylsiloxane copolymers offer better hydrocarbon compatibility (greater solubility) and higher refractive index than analogous dimethylsiloxane homopolymers.

Vinylmethyldimethylsiloxane - Dimethylsiloxane Copolymers, trimethylsiloxy terminated

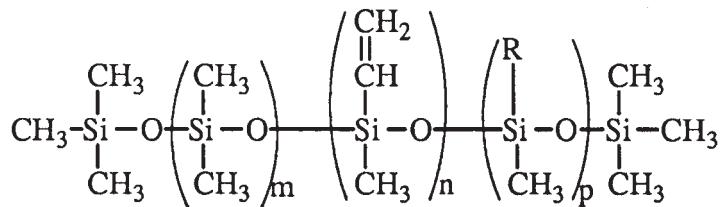
CAS: [67762-94-1] TSCA

Code	Mole % Vinylmethyldimethylsiloxane	Viscosity, cSt.	Specific Gravity	Price/100 g	Price/1kg
VDT-123	0.8-1.2	250-350	0.97	\$24.00	\$166.00
VDT-127	0.8-1.2	700-800	0.97	\$36.00	\$252.00
VDT-131	0.8-1.2	800-1200	0.97	\$24.00	\$166.00
VDT-163	0.3-0.7	2,000,000-4,000,000	0.98	\$60.00	\$420.00
VDT-431	4.0-5.0	800-1200	0.97	\$26.00	\$182.00
VDT-731	7.0-8.0	800-1200	0.96	\$24.00	\$166.00
VDT-954	11.0-13.0	300,000-500,000	0.98	\$106.00	\$742.00

Vinylmethyldimethylsiloxane - Dimethylsiloxane Copolymers, silanol terminated 4-6% OH

Molecular Weight: 550-650

CAS: [67923-19-7] TSCA

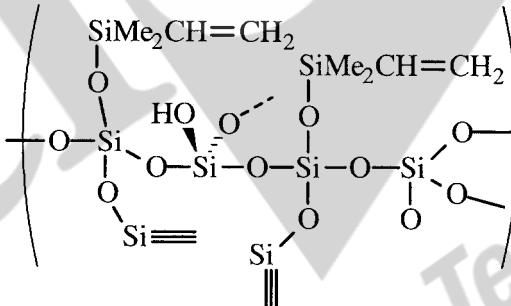

VDS-1013	10-15	25-40	0.99	\$54.00	\$378.00
----------	-------	-------	------	---------	----------

Vinylmethyldimethylsiloxane - Dimethylsiloxane Copolymers, vinyl terminated

CAS: [68083-18-1] TSCA

VDV-0131	0.3-0.4	800-1200	0.97	\$80.00	\$480.00
----------	---------	----------	------	---------	----------

These materials are modifiers for addition cure and activated cure elastomers.


Vinyl Gums (balance dimethylsiloxane unless otherwise specified)

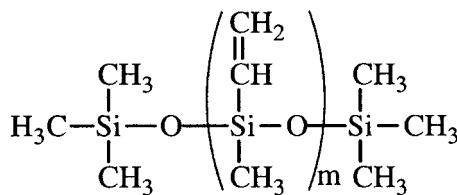
TSCA

Code	Mole % Vinylmethylsiloxane	Comonomer %	Specific Gravity	Price/100 g	Price/1kg
VGM-021	0.2-0.3		0.98	\$36.00	\$120.00
VGP-061	0.1-0.2	6-7% Diphenylsiloxane	0.99	\$36.00	\$180.00
VGF-991	1.0-2.0%	98-9% Trifluoropropylmethylsiloxane	1.35	\$64.00	\$384.00
DGM-000*	0.0	100% dimethylsiloxane	0.98	\$36.00	\$120.00

* This gum is listed here for convenience. It contains no vinyl functionality.

These materials are base polymers for activated cure specialty silicone rubbers.

Vinyl Q Resins Dispersions

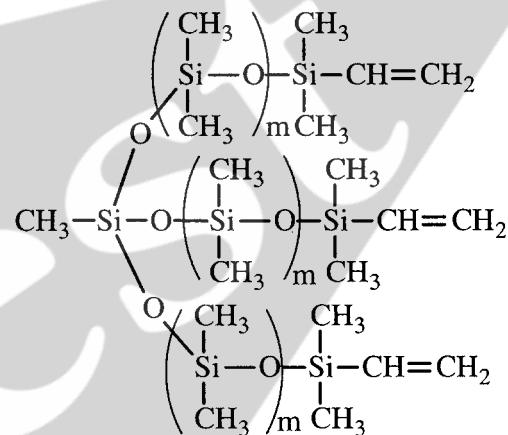
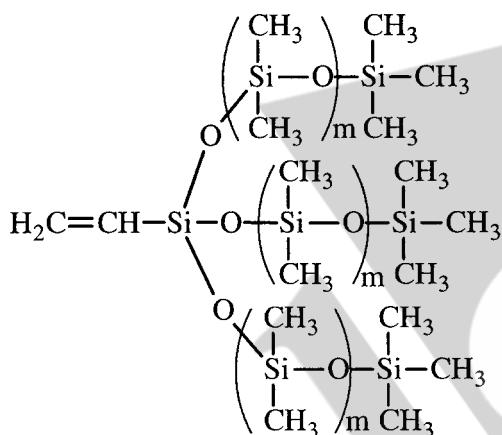

CAS: [68584-83-8] TSCA

Refractive							
Code	Base	Viscosity	Vinyl Eq/kg	Index	Density	Price/100g	Price/3kg
VQM-135*	DMS-V41	4,500-7000	0.2-0.3	1.405	1.02	\$19.00	\$285.00
VQM-146*	DMS-V46	50,000-60,000	0.18-0.23	1.406	1.02	\$21.00	\$315.00
VQX-221	50% in xylene		0.4-0.6		1.05	\$21.00	\$315.00

*20-25% Q-resin

Vinyl Q resins are clear reinforcing additives for addition cure elastomers.

See also Hydride Q resins.

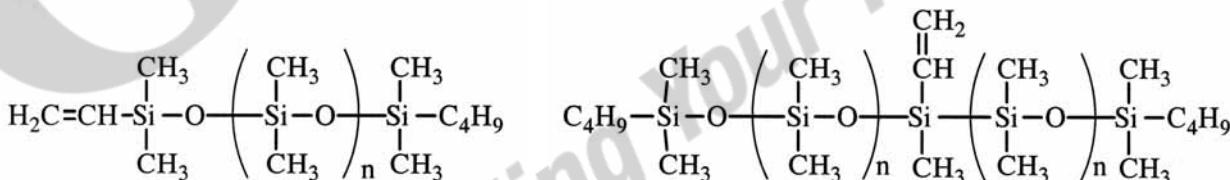


Vinylmethylsiloxane Homopolymers

TSCA

Code	Description	Molecular Weight	Viscosity	Density	Price/100g	Price/3kg
VMS-005	cyclics	258-431	3-7	0.99	\$45.00	\$240.00
VMS-T11*	linear	1000-1500	7-15	0.96	\$110.00	\$1980.00

*CAS: [68037-87-6]

Low molecular weight vinylmethylsiloxanes are primarily used as moderators (cure-rate retarders) for vinyl-addition cure silicones. They also are reactive intermediates and monomers.


Vinyl T-structure Polymers

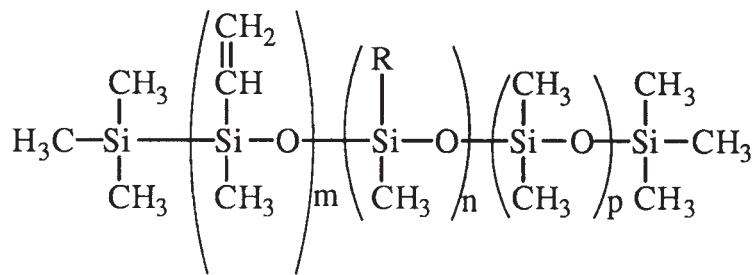
Code	Branch Point	Branch Terminus	Refractive Index			
			Viscosity	Density	Index	Price/100g
VTT-106*	Vinyl	Methyl	5-8	0.90		\$48.00
MTV-112	Methyl	Vinyl	15-30	0.96	1.407	\$110.00

*CAS: [126581-51-9] TSCA

T-structure polymers contain multiple branch points.

These materials are additives and modifiers for addition cure and activated cure elastomers.

Vinyl Functional Macromers


MonoVinyl Terminated PolyDimethylsiloxanes - asymmetric

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-V21	80-120	5500-6500	1.403	0.97	\$110.00	\$660.00
MCR-V41	8000-12000	55,000-65,000	1.404	0.98	\$210.00	

MonoVinyl Functional PolyDimethylsiloxane - symmetric

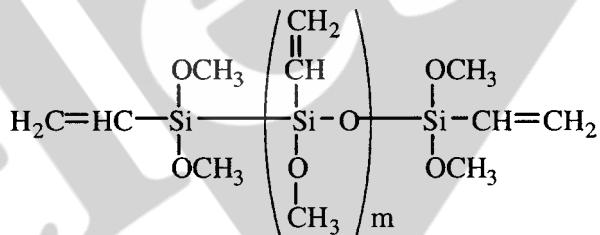
CAS: [689252-00-1]

Code	Viscosity	Molecular Weight	Refractive Index	Density	Price/100g
MCS-V12	16-20	1200-1400	1.419	0.95	\$110.00

VinylMethylsiloxyne Terpolymers

(3-5% Vinylmethylsiloxane)-(35-40% OctylmethylSiloxane)-(Dimethylsiloxane) terpolymer CAS: [597543-32-3] TSCA

Code	Viscosity	Molecular Weight	Density	Refractive Index	Price/100g	Price/1kg
VAT-4326	500-700	10,000-12,000	0.93	1.437	\$46.00	\$322.00


vinyl content: 0.20-0.24 eq/kg

(3-5% Vinylmethylsiloxane)-(35-40% PhenylmethylSiloxane)-(Dimethylsiloxane) terpolymer

Code	Viscosity	Molecular Weight	Density	Refractive Index	Price/100g	Price/1kg
VPT-1323	250-350	2500-3000	1.03	1.467	\$48.00	\$336.00

vinyl content: 0.25-0.29 eq/kg

Vinyl-alkyl terpolymers are used in hybrid organic polymer-silicone applications. Vinyl-phenyl terpolymers are used in refractive index match applications.

Vinylmethoxysiloxane Homopolymer

CAS: [131298-48-1] TSCA

Code	Description	Viscosity	Density	Price/100g	Price/1kg
VMM-010*	oligomer	8 - 12	1.10	\$28.00	\$196.00

*R.I.: 1.428; 22-3 wgt% vinyl

Vinylethoxysiloxane Homopolymer

CAS: [29434-25-1] TSCA

Code	Description	Viscosity	Density	Price/100g	Price/1kg
VEE-005*	oligomer	4 - 7	1.02	\$36.00	\$252.00

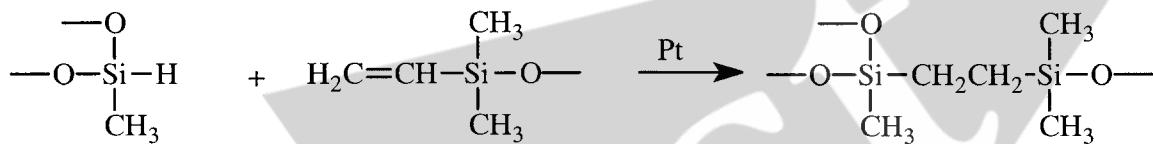
* 19-22 wgt% vinyl

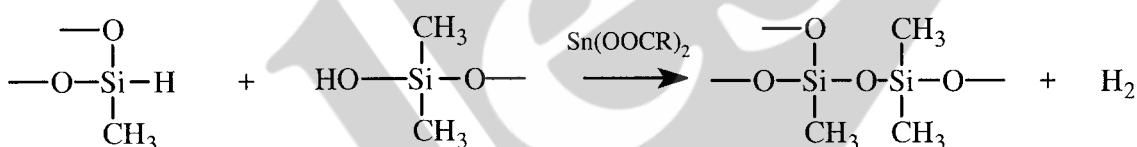
Vinylethoxysiloxane-Propylethoxysiloxane Copolymer

TSCA

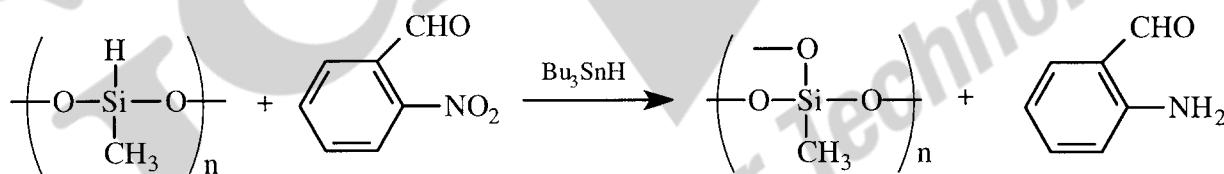
Code	Description	Viscosity	Density	Price/100g	Price/1kg
VPE-005*	oligomer	3 - 7	1.02	\$36.00	\$252.00

*9-11 wgt% vinyl


These materials are employed as adhesion promoters for vinyl-addition cure RTVs, as crosslinking agents for neutral cure RTVs, and as coupling agents in polyethylene for wire and cable applications.


Hydride Functional Polymers

Hydride functional siloxanes undergo three main classes of reactivity: hydrosilylation, dehydrogenative coupling and hydride transfer.


Hydrosilylation

Dehydrogenative Coupling

Reduction

Hydrosilylation - Addition Cure

The hydrosilylation of vinyl functional siloxanes by hydride functional siloxanes is the basis of addition cure chemistry used in 2-part RTVs and LTVs.^{1,2} The most widely used materials for these applications are methylhydrosiloxane-dimethylsiloxane copolymers which have more readily controlled reactivity than the homopolymers and result in tougher polymers with lower cross-link density. The preferred catalysts for the reactions are platinum complexes such as SIP6830.3 and SIP6832.2. In principle, the reaction of hydride functional siloxanes with vinyl functional siloxanes takes place at 1:1 stoichiometry. For filled systems, the ratio of hydride to vinyl is much higher, ranging from 1.3:1 to 4.5:1. The optimum cure ratio is usually determined by measuring the hardness of cured elastomers at different ratios. Phenyl substituted

¹E. Warrick et al, Rubber Chem. Tech., 52(3), 437, 1979

²O. Dolgov et al, Organosilicon Liquid Rubbers, Int'l Poly. Sci. & Techn., Monograph #1, RAPRA, 1975

hydrosiloxanes are used to crosslink phenylsiloxanes because of their greater solubility and closer refractive index match. The following chart gives some examples of starting ratios for common polymers and crosslinkers calculated at 1.5 Hydride to Vinyl ratio.

Starting Ratios of Hydride Functional Siloxanes (parts) to 100 parts of Vinylsiloxane*

Hydrosiloxane Vinylsiloxane	HMS-013	HMS-151	HMS-301
DMS-V31	80.8	4.2	2.1
DMS-V41	11.5	1.8	0.9
PDV-0341	11.9	1.9	0.9

* formulation is based on 1.5 Si-H to 1 CH₂=CH-Si; filled formulations may require up to 3x the amount listed

The hydrosilylation of olefins is utilized to generate alkyl and arylalkyl substituted siloxanes which form the basis of organic compatible silicone fluids. The hydrosilylation of functional olefins provides the basis for formation of silicone block polymers.

Dehydrogenative Coupling - Water Repellency, Foamed Silicones

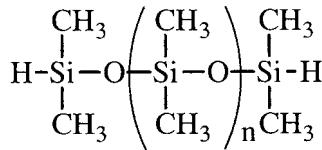
Hydroxyl functional materials react with hydride functional siloxanes in the presence bis(2-ethylhexanoate)tin, dibutyltinlauryltin, zinc octoate, iron octoate or a variety of other metal salt catalysts. The reaction with hydroxylic surface groups is widely used to impart water-repellency to glass, leather, paper and fabric surfaces and powders. A recent application is in the production of water-resistant gypsum board. Application is generally from dilute (0.5-2.0%) solution in hydrocarbons or as an emulsion. The coatings are generally cured at 110-150°C. Polymethylhydrosiloxane is most commonly employed. Polyethylhydrosiloxane imparts water-repellency, but has greater organic compatibility.

Silanol terminated polydimethylsiloxanes react with hydride functional siloxanes to produce foamed silicone materials. In addition to the formal chemistry described above, the presence of oxygen and moisture also influences cross-link density and foam structure.

Reduction

Polymethylhydrosiloxane is a versatile low cost hydride transfer reagent. It has a hydride equivalent weight of 60. Reactions are catalyzed by Pd⁰ or dibutyltin oxide. The choice of reaction conditions leads to chemoselective reduction, e.g. allyl reductions in the presence of ketones and aldehydes.^{3,4,5} Esters are reduced to primary alcohols in the presence of Ti(OiPr)₄.⁶ See brochure "Silicon-Based Reducing Agents".

Physical Properties


Polymethylhydrosiloxanes exhibit the highest compressibility of the silicone fluids, 9.32% at 20,000 psi and the lowest viscosity temperature coefficient, 0.50.

³ J. Lipowitz et al, J. Org. Chem., 38, 162, 1973.

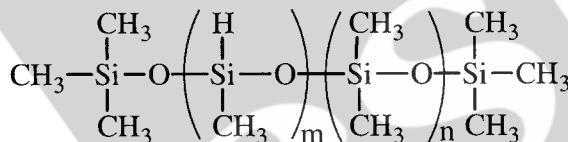
⁴ E. Keinan et al, Israel. J. Chem., 24, 82, 1984. J. Org. Chem., 48, 3545, 1983.

⁵ T. Mukaiyama et al, Chem. Lett., 1727, 1983.

⁶ M. Reding et al, J. Org. Chem., 60, 7884, 1995.

Hydride Terminated PolyDimethylsiloxanes

CAS: [70900-21-9] TSCA


Code	Viscosity	Molecular Weight		% H	Equivalent Weight	Specific Gravity	Refractive Index		Price/100g	Price/1 kg
		Weight	% H				Index	Price/100g		
DMS-H03	2 - 3	400-500	0.5	225	0.90	1.395	\$39.00	\$234.00		
DMS-H11	7-10	1000-1100	0.2	550	0.93	1.399	\$39.00	\$234.00		
DMS-H21	100	6000	0.04	3,000	0.97	1.403	\$68.00	\$408.00		
DMS-H25	500	17,200	0.01	8,600	0.97	1.403	\$45.00	\$270.00		
DMS-H31	1000	28,000	0.007	14,000	0.97	1.403	\$45.00	\$270.00		
DMS-H41	10,000	62,700	0.003	31,350	0.97	1.403	\$45.00	\$270.00		

Hydride terminated silicones are chain extenders for vinyl-addition silicones, enabling low viscosity, high elongation formulations. They are also intermediates for functionally terminated silicones.

polyPhenylMethylsiloxane, Hydride Terminated*

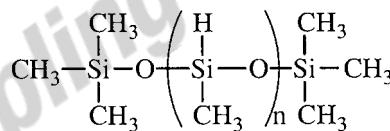
PMS-H03 37684 300-500 .05 200 0.93 1.453 \$120.00

* Dimethylsiloxy terminated

MethylHydrosiloxane - Dimethylsiloxane Copolymers, Trimethylsiloxy terminated

CAS: [68037-59-2] TSCA

Code	Viscosity	Molecular	Mole %	Equivalent	Specific	Refractive	Price/100g	Price/3 kg
		Weight	(MeHSiO)	Weight	Gravity	Index		
HMS-013	5000-8000	45,000-60,000	0.5-1.0	10,000	0.97	1.404	\$39.00	\$429.00
HMS-031	25-35	1900-2000	3-4	1,600	0.97	1.401	\$60.00	
HMS-064	8000-11,000	55,000-65,000	5-7	1,240	0.97	1.403	\$64.00	
HMS-071	25-35	1900-2000	6-7	1000	0.97	1.401	\$60.00	
HMS-082	110-150	5500-6500	7-8	925	0.97	1.403	\$24.00	\$192.00
HMS-151	25-35	1900-2000	15-18	490	0.97	1.400	\$24.00	\$192.00
HMS-301*	25-35	1900-2000	25-30	245	0.98	1.399	\$19.00	\$148.00
HMS-501	10-15	900-1200	50-55	135	0.96	1.394	\$24.00	\$192.00

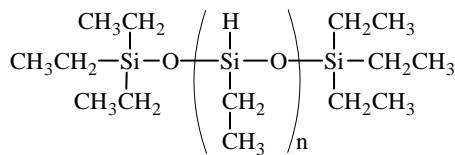

*available in reduced volatility grade

MethylHydrosiloxane - Dimethylsiloxane Copolymers, Hydride terminated

CAS: [69013-23-6] TSCA

HMS-H271	30-50	2000-2600	25-30	200	0.96	1.402	\$28.00	\$252.00
----------	-------	-----------	-------	-----	------	-------	---------	----------

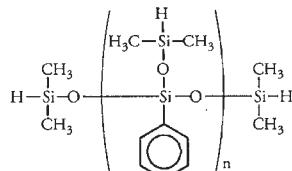
MethylHydrosiloxane copolymers are the primary crosslinkers for vinyl-addition silicones. They are also intermediates for functional copolymers.


polyMethylHydrosiloxanes, Trimethylsiloxy terminated

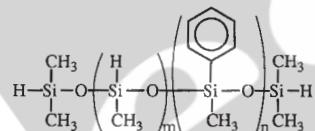
Tg: -119° V.T.C: 0.50

CAS: [63148-57-2] TSCA

Code	Viscosity	Molecular Weight	Mole % (MeHSiO)	Equivalent Weight	Specific Gravity	Refractive Index	Price/100g	Price/3 kg
HMS-991	15-29	1400-1800	100	67	0.98	1.395	\$16.00	\$110.00
HMS-992	24-30	1800-2100	100	65	0.99	1.396	\$19.00	\$134.00
HMS-993	30-45	2100-2400	100	64	0.99	1.396	\$28.00	\$232.00


MethylHydrosiloxane homopolymers are used as water-proofing agents, reducing agents and as components in some foamed silicone systems.

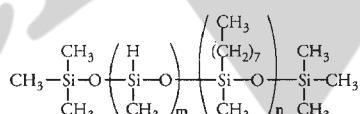
polyEthylHydrosiloxane, Triethylsiloxy terminated


CAS: [24979-95-1]

Code		Mole % (EtHSiO)	Equivalent Weight	Specific Gravity	Refractive Index	Price/25g	Price/100g
Code	Viscosity	99-100	70-75	0.99	1.422	\$37.00	\$120.00
HES-992	75-125	99-100	70-75	0.99	1.422	\$37.00	\$120.00

polyPhenyl - (DiMethylHydrosiloxy)siloxane, hydride terminated

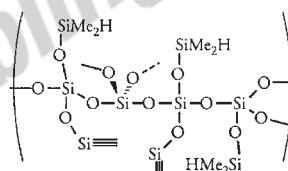
Code	Viscosity	Mole %	Equivalent	Specific	Refractive	Price/25g	Price/100g
		[(HMe ₂ SiO)(C ₆ H ₅ Si)O]	Weight	Gravity	Index		
HDP-111	50-80	99-100	150-155	1.01	1.463	\$74.00	\$240.00



MethylHydrosiloxane - PhenylMethylsiloxane copolymer, hydride terminated

CAS: [115487-49-5] TSCA

Code	Viscosity	Mole %	Equivalent	Specific	Refractive	Price/25g	Price/100g
		(MeHSiO)	Weight	Gravity	Index		
HPM-502*	75-110	45-50	160-170	1.08	1.500	\$50.00	\$160.00


*unit MW: 200

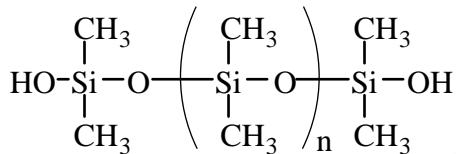
MethylHydrosiloxane - OctylMethylsiloxane copolymers and terpolymers

Code	Viscosity	Mole %		Equivalent Weight	Specific Gravity	Refractive Index		Price/25g	Price/100g
		(MeHSiO)							
HAM-301*	30-60	25-30		440-480	0.91	1.442		\$60.00	\$195.00
HAM-3012**	25-50	25-30		280-320	0.93	1.425		\$50.00	\$162.00

*CAS: [68554-69-8] TSCA ** contains, 30-35% C₈H₁₇MeSiO, 35-40% Me₂SiO

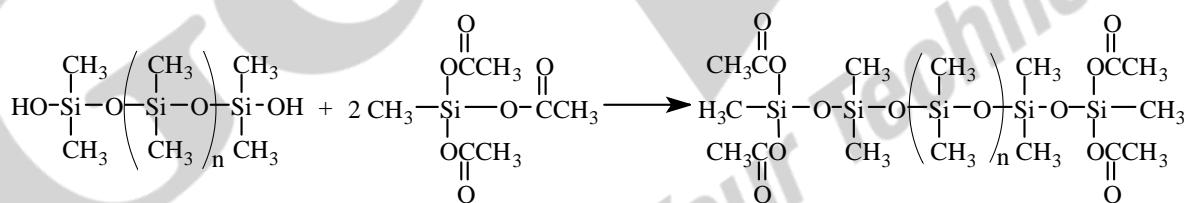
Hydride Q Resin

CAS: [68988-57-8] TSCA

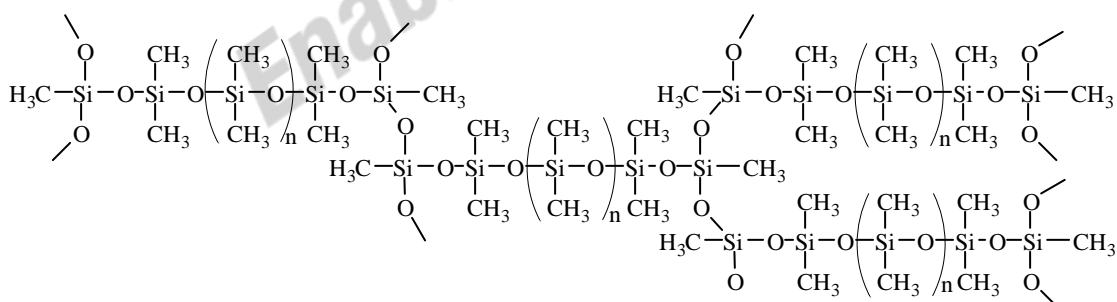

Code	Viscosity	Hydride Eq/kg	Equivalent	Specific	Refractive	Price/25g	Price/100g
			Weight	Gravity	Index		
HQM-105	3-5	7.8-9.2	110-130	0.94	1.410	\$19.00	\$62.00
HQM-107	6-8	7.5-9.0	115-135	0.95	1.410	\$29.00	\$94.00

see also SST-3MH1.1 p.46; SST-H8HS8 p.48

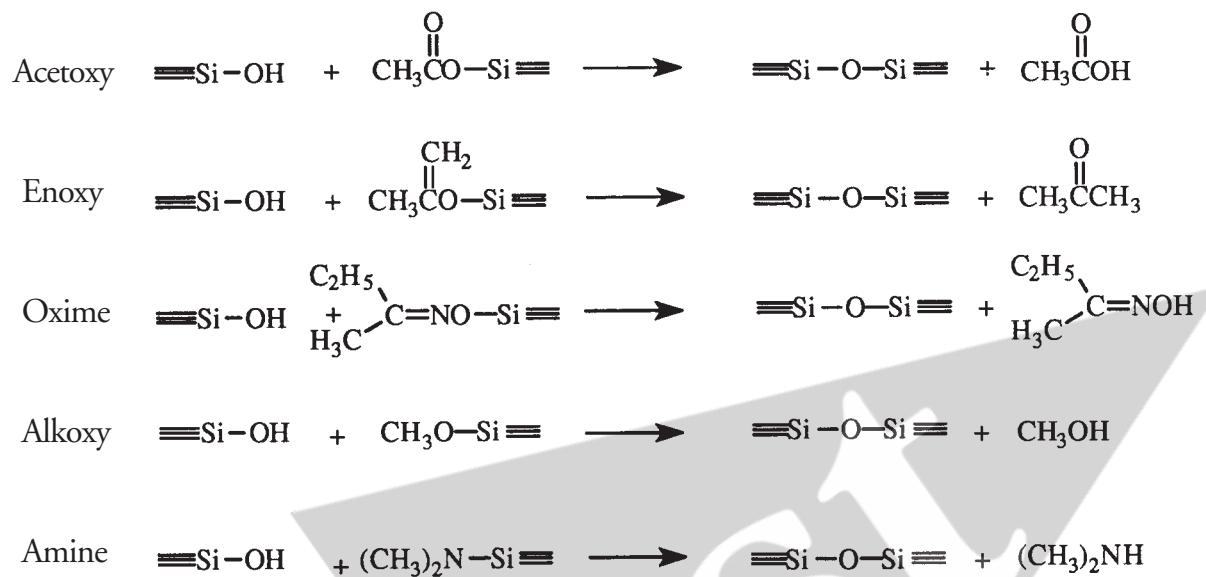
PLEASE INQUIRE ABOUT BULK QUANTITIES



Silanol Functional Polymers



Terminal silanol groups render polydimethylsiloxanes susceptible to condensation under both mild acid and base conditions. They are intermediates for most room temperature vulcanizable (RTV) silicones. Low molecular weight silanol fluids are generally produced by kinetically controlled hydrolysis of chlorosilanes. Higher molecular weight fluids can be prepared by equilibrating low molecular weight silanol fluids with cyclools, equilibrium polymerization of cyclools with water under pressure or methods of polymerization that involve hydrolyzable end caps such as methoxy groups. Low molecular weight silanol fluids can be condensed to higher molecular weight silanol fluids by utilization of chlorophosphazene (PNCl_2) catalysts.


Condensation cure one-part and two-part RTV systems are formulated from silanol terminated polymers with molecular weights ranging from 15,000 to 150,000. One-part systems are the most widely used. One-part systems are crosslinked with moisture-sensitive multi-functional silanes in a two stage reaction. In the first stage, after compounding with fillers, the silanol is reacted with an excess of multi-functional silane. The silanol is in essence displaced by the silane. This is depicted below for an acetoxy system.

The silicone now has two groups at each end that are extremely susceptible to hydrolysis. The silicone is stored in this form and protected from moisture until ready for use. The second stage of the reaction takes place upon use. When the end groups are exposed to moisture, a rapid crosslinking reaction takes place.

The most common moisture cure systems are:

The crosslinking reaction of alkoxy systems are catalyzed by titanates, frequently in combination with tin compounds and other metal-organics. Acetoxy one-part systems usually rely solely on tin catalysts. The tin level in one-part RTV systems is minimally about 50ppm with a ratio of ~2500:1 for Si-OR to Sn, but typical formulations have up to ten times the minimum. Other specialty crosslinking systems include benzamido and mixed alkoxyamino. The organic (non-hydrolyzeable) substituents on the crosslinkers influence the speed of cure. Among the widely used crosslinkers vinyl substituted is the fastest: vinyl > methyl > ethyl >> phenyl.

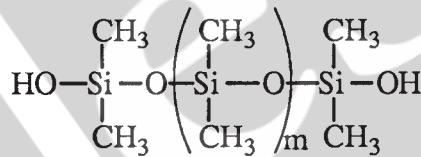
Two-part condensation cure silanol systems employ ethylsilicates (polydiethoxysiloxanes) such as PSI-021 as crosslinkers and dialkyltincarboxylates as accelerators. Tin levels in these systems are minimally 500ppm, but typical formulations have up to ten times the minimum. Two-part systems are inexpensive, require less sophisticated compounding equipment, and are not subject to inhibition.

The following is a starting point formulation for a two-part RTV.

10:1 ratio of A to B.

Part A			Part B		
DMS-S45	silanol fluid	70%	DMS-T21	100 cSt. silicone fluid	50%
SIS6964.0	silica powder	28%	SIS6964.0	silica powder	45%
PSI-021	ethylsilicate	2%	SND3260	DBTL tin catalyst	5%

This low tear strength formulation can be improved by substituting fumed silica for silica powder.

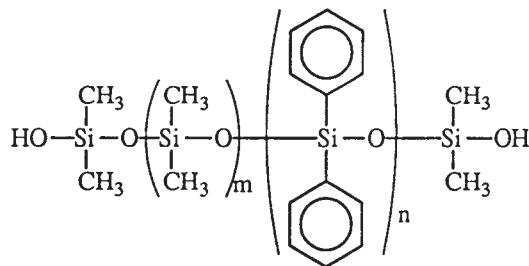

Incorporation of hydride functional (Si-H) siloxanes into silanol elastomer formulations results in foamed structures. The blowing agent is hydrogen which forms as a result of silanol condensation with hydrosiloxanes. Foam systems are usually two components which are compounded separately and mixed shortly before use.

Condensation Cure Catalysts- see p. 56

Condensation Cure Crosslinkers- see p. 55

Silanol terminated diphenylsiloxane copolymers are employed to modify low temperature properties or optical properties of silicone RTVs. They are also utilized as flow control agents in polyester coatings. Diphenylsiloxane homopolymers are glassy materials with softening points >120°C that are used to formulate coatings and impregnants for electrical and nuclear applications.

The reactivity of silanol fluids is utilized in applications other than RTVs. Low viscosity silanol fluids are employed as filler treatments and structure control additives in silicone rubber compounding. Intermediate viscosity, 1000-10,000 cSt. fluids can be applied to textiles as durable fabric softeners. High viscosity silanol terminated fluids form the matrix component in tackifiers and pressure sensitive adhesives.


Silanol Terminated PolyDimethylsiloxanes

CAS: [70131-67-8] TSCA

Code	Viscosity	Molecular Weight	% (OH)	(OH) - Eq/kg	Specific Gravity	Refractive Index	Price/100g	Price/3kg	Price/16kg
DMS-S12	16-32	400-700	4.5-7.5	2.3-3.5	0.95	1.401	\$22.00	\$154.00	\$616.00
DMS-S14	35-45	700-1500	3.0-4.0	1.7-2.3	0.96	1.402	\$19.00	\$124.00	\$496.00
DMS-S15	45-85	2000-3500	0.9-1.2	0.53-0.70	0.96	1.402	\$19.00	\$124.00	\$496.00
DMS-S21	90-120	4200	0.8-0.9	0.47-0.53	0.97	1.402	\$14.00	\$110.00	\$256.00
DMS-S27	700-800	18,000	0.2	0.11-0.13	0.97	1.403	\$14.00	\$96.00	\$240.00
DMS-S31	1000	26,000	0.1	0.055-0.060	0.98	1.403	\$14.00	\$96.00	\$240.00
DMS-S32	2000	36,000	0.09	0.050-0.055	0.98	1.403	\$14.00	\$96.00	\$240.00
DMS-S33*	3500	43,500	0.08	0.045-0.050	0.98	1.403	\$14.00	\$96.00	\$240.00
DMS-S35	5000	49,000	0.07	0.039-0.043	0.98	1.403	\$16.00	\$110.00	\$256.00
DMS-S42	18,000	77,000	0.04	0.023-0.025	0.98	1.403	\$19.00	\$124.00	\$296.00
DMS-S45	50,000	110,000	0.03	0.015-0.017	0.98	1.403	\$19.00	\$124.00	\$296.00
DMS-S51	90,000-150,000	139,000	0.02	0.010-0.015	0.98	1.403	\$34.00	\$264.00	

COMMERCIAL

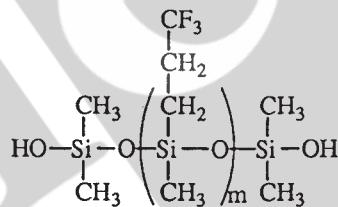
*also available as an emulsion (see DMS-S33M50 pg 41)

Silanol Terminated Diphenylsiloxane - Dimethylsiloxane Copolymers

TSCA

Code	Viscosity	Mole % Diphenylsiloxane	Molecular Weight	Refractive Index	% (OH)	Price/100g	Price/3kg
PDS-0338*	6000-8000	2.5-3.5	50,000	1.420	0.4-0.7	\$58.00	\$490.00
PDS-1615**	50-60	14-18	900-1000	1.473	3.4-4.8	\$46.00	\$424.00

*CAS: [68951-93-9]


**CAS: [68083-14-7]

Silanol Terminated PolyDiphenylsiloxane

Tm: 142-155°; contains cyclics

CAS: [63148-59-4] TSCA

Code	Viscosity	Mole % Diphenylsiloxane	Molecular Weight	Refractive Index	% (OH)	Price/100g	Price/1kg
PDS-9931	glassy solid	100	1000-1400	1.610	3.4-2.4	\$84.00	\$630.00

Silanol Terminated PolyTrifluoropropylMethylsiloxane

CAS: [68607-77-2] TSCA

Code	Viscosity	Mole % CF3CH2CH2MeSiO	Molecular Weight	Refractive Index	% (OH)	Specific Gravity	Price/100g
FMS-9921	50-160	100	550-800	1.379	5-7%	1.28	\$90.00
FMS-9922	150-250	100	800-1200	1.379	3-5%	1.28	\$132.00

Silanol-Trimethylsilyl Modified Q Resins

CAS: [56275-01-5] TSCA

Code	Wgt % Q resin	Molecular Weight	%(OH)	Base Resin	solvent	Price/100g	Price/3kg
SQO-299	100	3000-4000	1.7-2.0			\$39.00	\$468.00
SQD-255	50	3000-4000			50% D5	\$25.00	\$160.00
SQT-221	60	3000-4000			40% toluene	\$19.00	\$124.00
SQS-261	35-40	3000-4000		DMS-S61*	40% toluene	\$29.00	\$196.00

*300,000-400,000 MW silanol terminated polydimethylsiloxane

Silanol-Trimethylsilylmodified Q resins are often referred to as MQ resins. They serve as reinforcing resins in silicone elastomers and tackifying components in pressure sensitive adhesives.

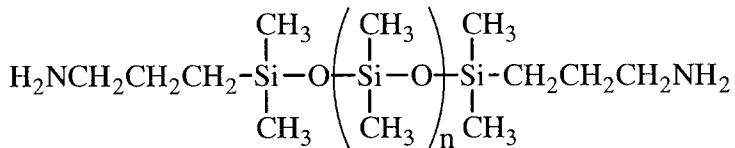
Silanol terminated vinylmethylsiloxane copolymers- see Vinylmethylsiloxane Copolymers

►►► PLEASE INQUIRE ABOUT BULK QUANTITIES

Amino Functional Silicones

Aminoalkylfunctional silicones have a broad array of applications as a result of their chemical reactivity, their ability to form hydrogen bonds and, particularly in the case of diamines, their chelating ability. Additional reactivity can be built into aminoalkyl groups in the form of alkoxy groups. Aminoalkylsiloxanes are available in the three classes of structures typical for silicone polymers: terminated, pendant group and T-structure.

Aminopropyl terminated polydimethylsiloxanes react to form a variety of polymers including polyimides, polyureas¹ and polyurethanes. Block polymers based on these materials are becoming increasingly important in microelectronic (passivation layer) and electrical (low-smoke generation insulation) applications. They are also employed in specialty lubricant and surfactant applications.



Amino functionality pendant from the siloxane backbone is available in two forms: (aminopropyl)-methylsiloxane-dimethylsiloxane copolymers and (aminoethylaminopropyl)-methylsiloxane-dimethylsiloxane copolymers. They are frequently used in modification of polymers such as epoxies and urethanes, internal mold releases for nylons and as lubricants, release agents and components in coatings for textiles and polishes.

Aminoalkyl T-structure silicones are primarily used as surface treatments for textiles and finished metal polishes (e.g. automotive car polishes). The resistance to wash-off of these silicones is frequently enhanced by the incorporation of alkoxy groups which slowly hydrolyze and form crosslink or reactive sites under the influence of the amine. The same systems can be reacted with perfluorocarboxylic acids to form low surface energy (<7 dynes/cm) films.²

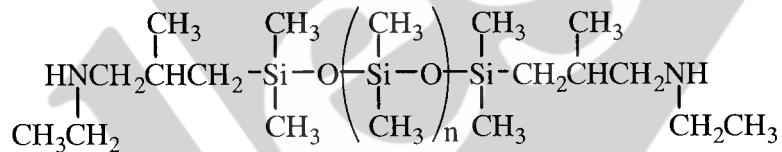
¹G. Riess, Monatshefte Chemie, 137, 1434, 2006.

²A. Thürman, J. Mater. Chem., 21, 381, 2001.

Aminopropyl Terminated PolyDimethylsiloxanes

Tg: -123°

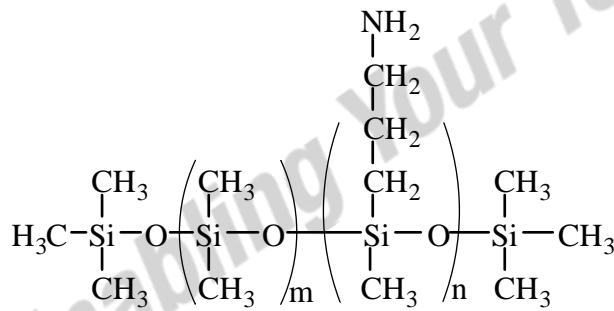
CAS: [106214-84-0] TSCA


COMMERCIAL

Code	Viscosity	Molecular Weight		% Amine (NH ₂)	Specific Gravity	Refractive Index		Price/100g	Price/1kg
DMS-A11	10-15	850-900		3.2-3.8	0.98	1.412	\$78.00	\$468.00	
DMS-A12	20-30	900-1000		3.0-3.2	0.98	1.411	\$60.00	\$360.00	
DMS-A15	50-60	3000		1.0-1.2	0.97	1.408	\$43.00	\$234.00	
DMS-A21	100-120	5000		0.6-0.7	0.98	1.407	\$39.00	\$234.00	
DMS-A31	900-1100	25,000		0.11-0.12	0.98	1.407	\$39.00	\$234.00	
DMS-A32	1800-2200	30,000		0.08-0.09	0.98	1.404	\$29.00	\$174.00	
DMS-A35	4000-6000	50,000		0.05-0.06	0.98	1.404	\$39.00	\$243.00	

Reduced Volatility Grades

DMS-A32R*	1900-2300	30,000	0.08-0.09	0.98	1.404	\$76.00	\$418.00
-----------	-----------	--------	-----------	------	-------	---------	----------

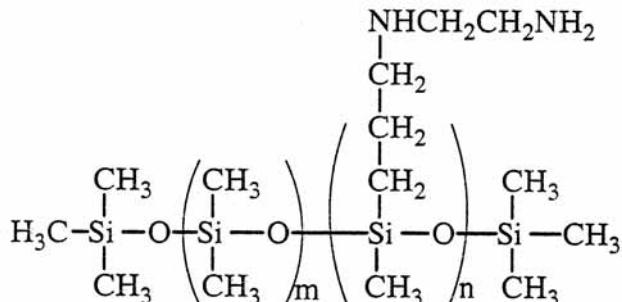

*total volatiles, 4 hours @ 150°C: 0.5% maximum

N-EthylAminoisobutyl Terminated PolyDimethylsiloxane

CAS: [254891-17-3] TSCA

COMMERCIAL

Code	Viscosity	Molecular Weight		% Amine (NH)	Specific Gravity	Refractive Index		Price/100g	Price/1kg
DMS-A211	8-12	800-1000		2.8-3.2	0.93	1.422	\$96.00	\$672.00	
DMS-A214	32-40	2500-3000		1.0-1.4	0.96	1.411	\$96.00	\$672.00	


AminopropylMethylsiloxane - Dimethylsiloxane Copolymers

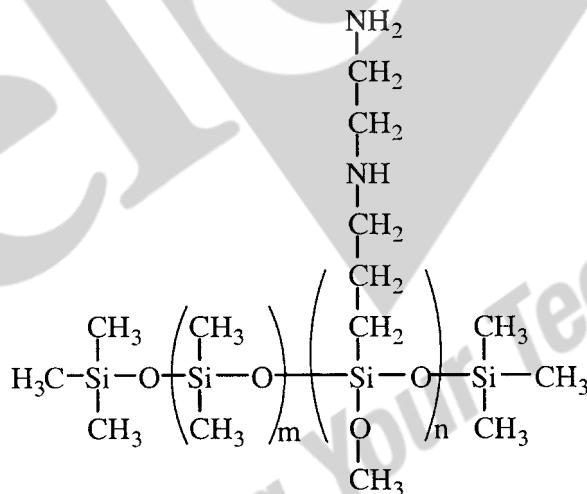
CAS: [99363-37-8] TSCA

COMMERCIAL

Code	Viscosity	Molecular Weight		Mole % (Aminopropyl) MethylSiloxane	Specific Gravity	Refractive Index		Price/100g	Price/3kg
AMS-132	80-200	4500-6000		2-3	0.96	1.404	\$29.00	\$174.00	
AMS-152	150-300	7000-9000		4-5	0.97	1.408	\$29.00	\$174.00	
AMS-162	80-120	4000-5000		6-7	0.97	1.410	\$29.00	\$174.00	

PLEASE INQUIRE ABOUT BULK QUANTITIES

AminoethylaminopropylMethylsiloxane - Dimethylsiloxane Copolymers


CAS: [71750-79-3] TSCA

Code	Viscosity	Mole % (Diamino- propyl)MethylSiloxane	Specific Gravity	Refractive Index	Price/100g	Price/3kg
AMS-233	900-1200	2 - 4	0.98	1.407	\$34.00	\$238.00

AminoethylaminoisobutylMethylsiloxane - Dimethylsiloxane Copolymers

CAS: [106842-44-8] TSCA

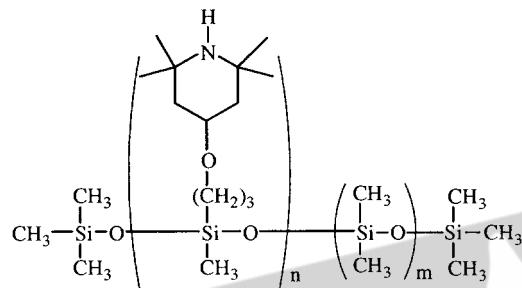
Code	Viscosity	Mole % (Diamino- isobutyl)MethylSiloxane	Specific Gravity	Refractive Index	Price/100g	Price/3kg
AMS-242	120-150	3-5	0.97	1.404	\$48.00	\$336.00

Amine Functional Siloxanes with Alkoxy Groups

AminoethylaminopropylMethoxysiloxane - Dimethylsiloxane Copolymers

with branch structure

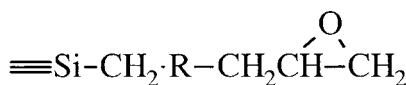
CAS: [67923-07-3] TSCA


Code	Viscosity	Molecular Weight	Mole % (Diamino- propyl)MethoxySiloxane	Specific Gravity	Base Equiv. meq/g	Price/100g	Price/3 kg
ATM-1112	100-200	5000-6500	0.5-1.5	0.97	0.55	\$24.00	\$168.00
ATM-1322*	200-300		2 - 4	0.97		\$29.00	\$174.00

*also available as an emulsion

Diaminoalkoxysilane cure to form durable films on metal substrates.

Hindered Amine Functional Siloxanes


Hindered Amine Light Stabilizers (HALS) may be incorporated into polysiloxane structures affording an ultraviolet light stabilizer system that is compatible with other stabilizers such as hindered phenolics and organophosphites and is strongly resistant to water extraction.

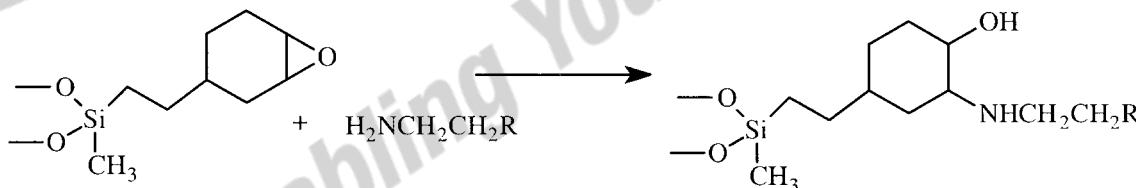
(Tetramethylpiperidinyloxy)propylMethylsiloxane-Dimethylsiloxane copolymer

CAS: [182635-99-0] TSCA

Code	Viscosity	mole % HALS functional MethylSiloxane	Specific Gravity	Refractive Index	Price/100g	Price/1kg
UBS-0541	10000	4-6	1.00	1.408	\$72.00	\$504.00
UBS-0822	250	7-9	0.98	1.409	\$60.00	\$420.00

Epoxy Functional Silicones

Difunctional and multifunctional epoxy silicones include lower molecular weight siloxanes with discrete structures and higher molecular weight silicones with either pendant or terminal epoxy functionalization. Depending on specific structures and formulations, they selectively impart a wide range of properties, associated with silicones - low-stress, low temperature properties, dielectric properties and release. Properties of cured silicone modified epoxies vary from hydrophilic to hydrophobic depending on the epoxy content, degree of substitution and ring-opening of epoxides to form diols. The ring-strained epoxycyclohexyl group is more reactive than the epoxypropoxy group and undergoes thermally or chemically induced reactions with nucleophiles including protic surfaces such as cellulosics of polyacrylate resins.

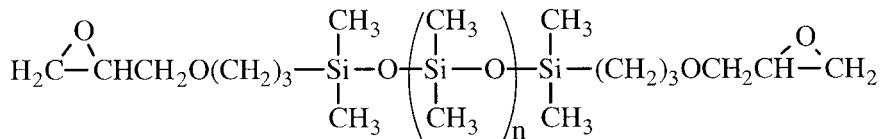

The compatibility of epoxy functional silicones with conventional epoxies varies. In simple unfilled systems, total solubility is required. For filled systems, it is often desireable to consider systems that are miscible but have only limited solubility since microphase separation can allow a mechanism for stress-relief.

Epoxy silicones with methoxy groups can be used to improve adhesion to substrates such as titanium, glass or silicon. They also can improve chemical resistance of coatings by forming siloxane crosslinks upon exposure to moisture.

Silicone - Epoxy Compatibility

Gelest Product	Bisphenol	Epoxy Type Polyglycol	Cycloaliphatic
SIB1092.0	miscible	soluble	soluble
PMS-E11	soluble	soluble	soluble
DMS-E09	soluble	soluble	soluble
DMS-E11	insoluble	miscible	miscible
EMS-622	insoluble	miscible	insoluble

(10% silicone 90% epoxy)



A UV initiator for cycloaliphatic epoxides is OMBO037 described in the Catalyst Section. Epoxy functional siloxane copolymers with polyalkyleneoxide functionality provide hydrophilic textile finishes.

Epoxy functional silsesquioxanes- see Specialty Silsesquioxanes.

Monoepoxy functional systems- see p.38

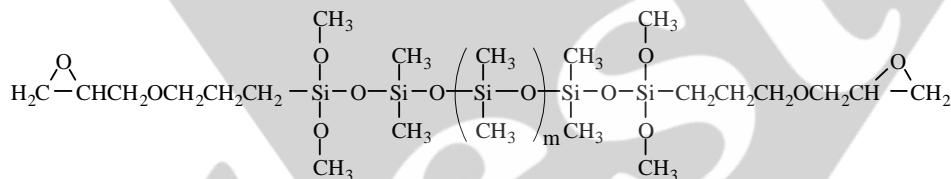
UV Initiators- see p.59

Epoxypropoxypropyl Terminated PolyDimethylsiloxanes

[102782-97-8] TSCA

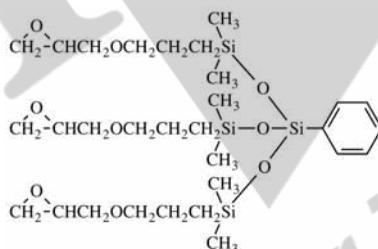
Code	Viscosity	Molecular Weight	Epoxy-Eq/kg	Specific Gravity	Refractive Index	Price/100g	Price/1 kg
DMS-E09	8-11	363	5.5	0.99	1.446	\$60.00	\$420.00
DMS-E11	12-18	500-600	1.9-2.2	0.98	1.419	\$90.00	\$540.00
DMS-E12	20-35	1000-1400	1.6-1.9	0.98	1.417	\$120.00	\$840.00
DMS-E21	100-140	4500-5500	0.45-3.5	0.98	1.408	\$120.00	\$840.00

(Epoxypropoxypropyl Methylsiloxane)-(Dimethylsiloxane) Copolymers

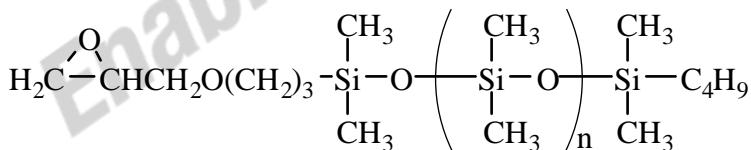

CAS: [68440-71-7] TSCA

EMS-622	200-300	7,000-9,000	5-7	0.99	1.412	\$16.00	\$96.00
---------	---------	-------------	-----	------	-------	---------	---------

Epoxypropoxypropyl Terminated PolyPhenylMethylsiloxanes


[102782-98-9] TSCA

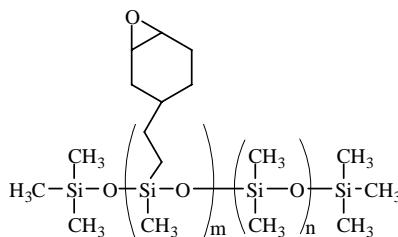
PMS-E11	15-30	500-600	3.6-4.0	1.01	1.475	\$180.00	
---------	-------	---------	---------	------	-------	----------	--


(Epoxypropoxypropyl)dimethoxysilyl Terminated PolyDimethylsiloxanes

[188958-73-8] TSCA

DMS-EX21	80-120	3500-4000	0.48-0.5	0.98	1.408	\$16.00	\$96.00
----------	--------	-----------	----------	------	-------	---------	---------

Multifunctional Siloxanes**Tris(Glycidoxypromethylsiloxy)Phenylsilane, 95% amber liquid** [90393-83-2] TSCA

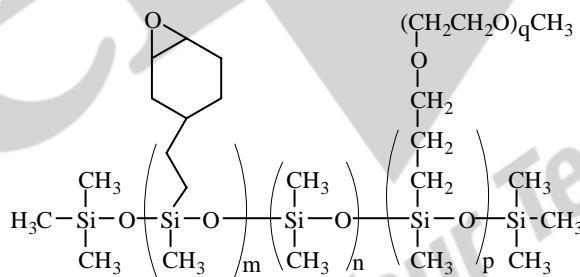

Code	Viscosity	Molecular Weight	Melting Point	Specific Gravity	Refractive Index	Price/25g
SIT8715.6	30-35	673.11	-73°	1.05	1.4742	\$55.00

C₃₀H₅₆O₉Si₄ HMIS: 2-1-0-X**Monofunctional Siloxane Fluids (Macromers)****Mono-(2,3-Epoxy)Propylether Terminated PolyDimethylsiloxane**

CAS: [127947-26-6]

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price
MCR-E11	10-15	1000	1.410	0.96	100g/\$186.00
MCR-E21	100-120	5000	1.408	0.97	100g/\$186.00

PLEASE INQUIRE ABOUT BULK QUANTITIES


Cycloaliphatic Epoxy Silanes and Silicones

These materials, characterized by a combination of cycloaliphatic and siloxane structures, have outstanding weathering characteristics, controlled release and coefficient of friction and excellent electrical properties. They can be cured either by cationic UV photoinitiators or conventional epoxy hardeners. In cationic UV-cure systems the cycloaliphatic epoxy silicones combine the properties of reactive diluents with surfactant properties. The release properties can be employed to make parting layers for multilayer films. If high levels of epoxy functional silicones are used in UV cure formulations, cationic photoinitiators with hydrophobic substitution are preferred.

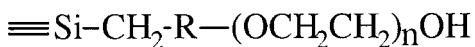
(EpoxycyclohexylethylMethylsiloxane) - Dimethylsiloxane Copolymers

CAS: [67762-95-2] TSCA

Code	Viscosity	Molecular Weight	Mole % (Epoxycyclohexyl)-ethylMethylSiloxane	Specific Gravity	Refractive Index	Price/100g	Price/1 kg	Price/10 kg
ECMS-227	650-800	18,000-20,000	2-3	0.98	1.407	\$19.00	\$114.00	\$799.00
ECMS-327	650-850	18,000-20,000	3-4	0.99	1.409	\$19.00	\$114.00	\$799.00
ECMS-924	300-450	10,000-12,000	8-10	0.97	1.421	\$19.00	\$114.00	\$799.00

(2-3% EpoxycyclohexylethylMethylsiloxane)(10-15% MethoxypolyalkyleneoxyMethylSiloxane)- (Dimethylsiloxane) Terpolymers

CAS: [69669-36-9] TSCA


Code	Viscosity	Molecular Weight	Epoxy-Eq/Kg	Specific Gravity	Refractive Index	Price/100g	Price/1 kg	Price/10 kg
EBP-234	4000-5000	25,000-36,000	0.75-0.80	1.03	1.445	\$22.00	\$132.00	\$924.00

Epoxycyclohexylethyl Terminated PolyDimethylsiloxanes

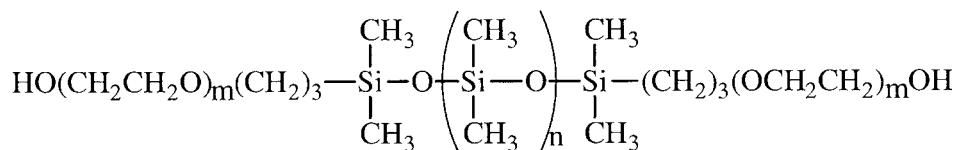
CAS: [102782-98-9] TSCA

Code	Viscosity	Molecular Weight	Epoxy-Eq/Kg	Specific Gravity	Refractive Index	Price/100g	Price/1 kg
DMS-EC13	25-35	900-1100	1.9-2.0	0.99	1.433	\$180.00	\$1080.00

see also SIB1092.0

Carbinol Functional Silicones

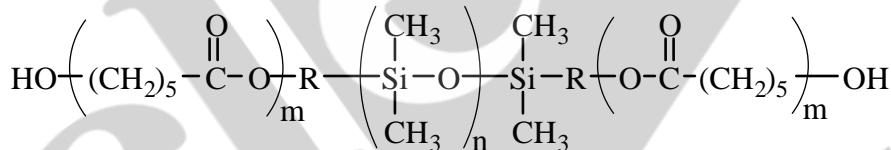
Carbinol (Hydroxy) Functional Siloxanes


The term carbinol refers to a hydroxyl group bound to carbon (C-OH) and is frequently used in silicone chemistry to differentiate them from hydroxyl groups bound to silicon (Si-OH) which are referred to as silanols. Carbinol terminated siloxanes contain primary hydroxyl groups which are linked to the siloxane backbone by non-hydrolyzeable transition groups. Frequently a transition block of ethylene oxide or propylene oxide is used. Carbinol functional polydimethylsiloxanes may be reacted into polyurethanes, epoxies, polyesters and phenolics.

Applications include additives for urethane leather finishes and as reactive internal lubricants for polyester fiber melt spinning. They are also utilized as surfactants and processing aids for dispersion of particles in silicone formulations.

Polyethyleneoxide transition blocks are more polar than polypropyleneoxide blocks and maintain a broad range of liquid behavior. Carbinol terminated siloxanes with caprolactone transition blocks offer a highly polar component which enables compatibility in a variety of thermoplastic resins.

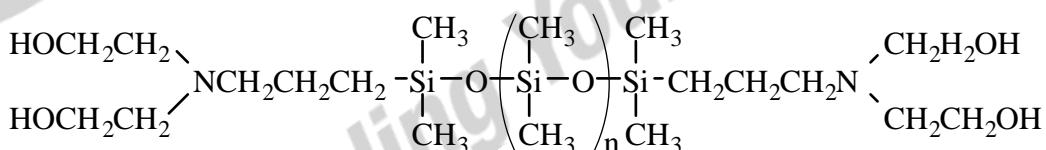
Carbinol functional Macromers - see Macromers p.37.


Carbinol (Hydroxyl) Terminated PolyDimethylsiloxanes

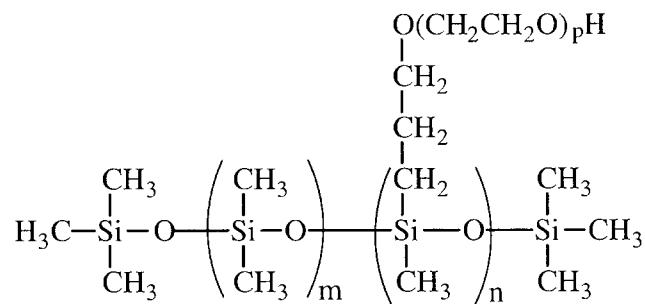
Code	Viscosity	Molecular Weight	Weight % Non-Siloxane	Specific Gravity	Refractive Index	Price/100g	Price/1kg
DMS-C15	30-50	1000	20	0.98	1.417	\$72.00	\$432.00
DMS-C16	50-65	600-850	-	0.97	1.416	\$65.00	\$390.00
DMS-C21	110-140	4500-5500	4	0.98	1.407	\$42.00	\$252.00
DMS-C23	300-350	10,000	-	0.98	1.406	\$48.00	\$288.00
DBE-C25*	400-450	3500-4500	60	1.07	1.450	\$29.00	\$174.00
DBP-C22**	200-300	2500-3200	45-55	0.99	1.434	\$42.00	\$252.00

note: for DMS-C15, DMS-C21, DMS-C23 m=1 CAS: [156327-07-0]; for DMS-C16 m=0 CAS: [104780-66-7] TSCA

*A-B-A ethylene oxide - dimethylsiloxane - ethylene oxide block polymer CAS: [68937-54-2]


**A-B-A propylene oxide - dimethylsiloxane - propylene oxide block copolymer m=12-16 CAS: [161755-53-9]

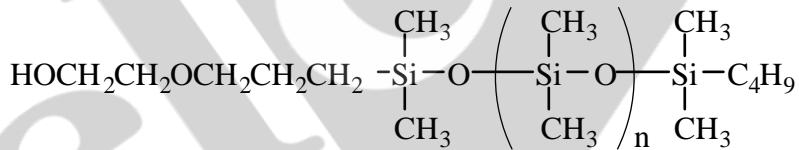
Carbinol (Hydroxyl) Terminated PolyDimethylsiloxanes


Code	Melting Point	Molecular Weight	Weight % Non-Siloxane	Specific Gravity	Refractive Index	Price/100g	Price/1kg
DBL-C31*	52-6°	5700-6900	50	1.05		\$64.00	\$396.00

*A-B-A caprolactone - dimethylsiloxane - caprolactone block polymer m=15-20 CAS: [120359-07-1]

[Bis(Hydroxyethyl)Amine] Terminated PolyDimethylsiloxanes

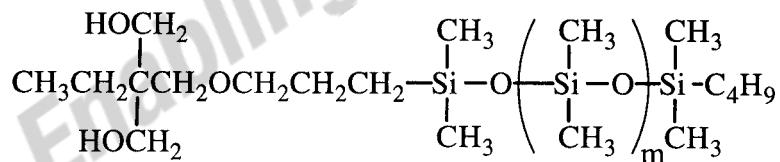
Code	Viscosity	Molecular Weight	Weight % Non-Siloxane	Specific Gravity	Refractive Index	Price/100g	Price/1kg
DMS-CA21	120-160	3000	10	0.97	1.414	\$106.00	\$848.00



(Carbinol functional)Methylsiloxane-Dimethylsiloxane Copolymers

Code	Molecular Weight	Viscosity	Mole % Carbinol functional MethylSiloxane	Hydroxyl class	Refractive Index	Specific Gravity	Price/100g	Price/1kg
CMS-626	4500-5500	550-650	40	primary	1.458	1.09	\$39.00	\$234.00
			0.4 equivalents of hydroxyl/kg (ca. 2 hydroxyethylenoxypropyl groups/chain)		65% non-siloxane	CAS: [68937-54-2] TSCA		
CMS-222	5500-6500	150-200	5	secondary	1.411	0.976	\$36.00	\$216.00
			0.5 equivalents hydroxyl/kg (ca. 3 hydroxypropyleneoxypropyl groups/chain)		20% non-siloxane	CAS: [68957-00-6] TSCA		

(Hydroxyl functional)Methylsiloxane-(3,4-Dimethoxyphenylpropyl)Methylsiloxane-Dimethylsiloxane Terpolymer

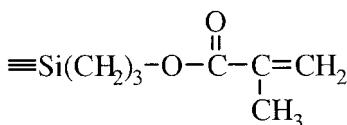

CMS-832	1000-2000			primary	1.505	1.09	\$39.00	\$234.00
			hydroxy(ethylenoxy) ₈ propyl substituted; 0.2-0.3 meq OH/gram		CAS: [200443-93-2]			

See also macromer section for mono-diol terminated silicones.

MonoCarbinol Terminated polyDimethylsiloxane

Code	Molecular Weight	Viscosity	Refractive Index	Specific Gravity	Price/100g	Price/1kg	COMMERCIAL
MCR-C12	1000	15-20	1.409	0.96	\$80.00	\$480.00	
MCR-C18	5000	60-140	1.405	0.97	\$68.00	\$408.00	
MCR-C22	10,000	250	1.404	0.98	\$60.00	\$360.00	

MCR-C12, MCR-C18, MCR-C22: hydroxyethoxypropyl terminated, CAS: [207308-30-3] TSCA

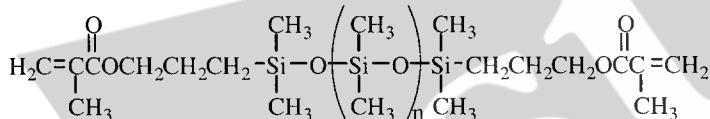


MonoDiCarbinol Terminated PolyDimethylsiloxane

CAS: [218131-11-4]

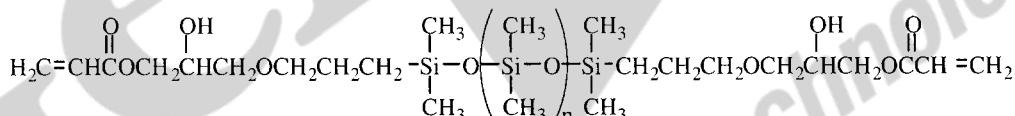
MCR-C61	1000	50-60	1.417	0.97	100g/\$60.00	1kg/\$480.00
MCR-C62	5000	100-125	1.409	0.97	100g/\$60.00	1kg/\$480.00

Diol terminated silicones improve electrical and release properties of polyurethanes.


PLEASE INQUIRE ABOUT BULK QUANTITIES

Methacrylate and Acrylate Functional Siloxanes

Methacrylate and Acrylate functional siloxanes undergo the same reactions generally associated with methacrylates and acrylates, the most conspicuous being radical induced polymerization. Unlike vinylsiloxanes which are sluggish compared to their organic counterparts, methacrylate and acrylate siloxanes have similar reactivity to their organic counterparts. The principal applications of methacrylate functional siloxanes are as modifiers to organic systems. Upon radical induced polymerization, methacryloxypropyl terminated siloxanes by themselves only increase in viscosity. Copolymers with greater than 5 mole % methacrylate substitution crosslink to give non-flowable resins. Acrylate functional siloxanes cure at greater than ten times as fast as methacrylate functional siloxanes on exposure to UV in the presence of a photoinitiator such as ethylbenzoin. They form permeable membranes for fiber-optic oxygen and glucose sensors.¹


Oxygen is an inhibitor for methacrylate polymerization in general. The high oxygen permeability of siloxanes usually makes it necessary to blanket these materials with nitrogen or argon in order to obtain reasonable cures.

Methacryloxypropyl Terminated PolyDimethylsiloxanes

CAS: [58130-03-3]

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/25g	Price/100g
DMS-R05	4 - 6	380-550	1.448	0.97	\$62.00	\$202.00
DMS-R11	8-14	900-1200	1.422	0.98	\$78.00	\$254.00
DMS-R18	50-90	4500-5500	1.409	0.98	\$78.00	\$254.00
DMS-R22	125-250	10,000	1.405	0.98	\$78.00	\$254.00
DMS-R31	1000	25,000	1.404	0.98	\$65.00	\$212.00

(3-Acryloxy-2-hydroxypropoxypropyl) Terminated PolyDimethylsiloxanes

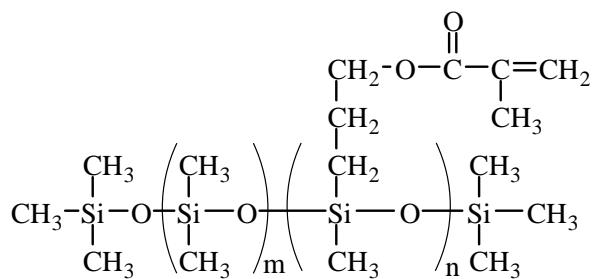
CAS: [128754-61-0]

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/25g	Price/100g
DMS-U21	60-140	600-900	1.426	0.99	\$28.00	\$90.00

Acryloxy Terminated Ethyleneoxide - Dimethylsiloxane-Ethyleneoxide ABA Block Copolymers

CAS: [117440-21-9] TSCA

Code	Viscosity	Molecular Weight	MW PDMSO block	Refractive Index	Specific Gravity	Price/100g	Price/1kg
DBE-U12*	80-120	1500-1600	700-800	1.450	1.03	\$34.00	\$238.00
DBE-U22**	110-150	1700-1800	1000-1200	1.445	1.03	\$34.00	\$238.00


* 45-55 wgt% $\text{CH}_2\text{CH}_2\text{O}$ **30-35 wgt% $\text{CH}_2\text{CH}_2\text{O}$

Methacryloxypropyl Terminated Branched PolyDimethylsiloxanes

CAS: [80722-63-0]

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/25g	Price/100g
SIB1400.0	14-18	683	1.432	0.99	\$44.00	\$143.00

see also- methacrylate functional macromers

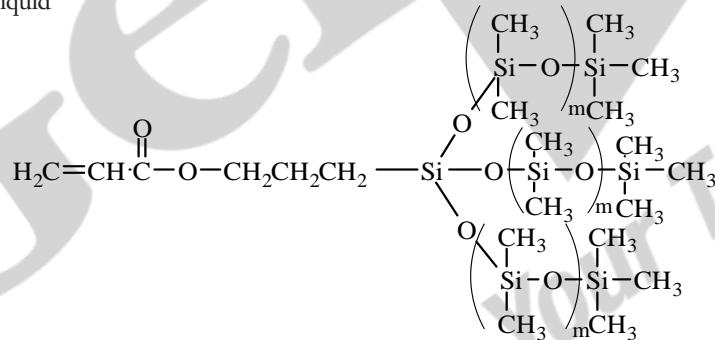
(Methacryloxypropyl)methylsiloxane - Dimethylsiloxane Copolymers

CAS: [104780-61-2] TSCA

Code	Viscosity	Specific Gravity	Mole % (Methacryloxypropyl)Methylsiloxane	Price/100g
RMS-044	8000-10,000	0.98	4 - 6	\$120.00
RMS-033	1000-2000	0.98	2 - 4	\$86.00
RMS-083	2000-3000	0.99	7 - 9	\$110.00

(Acryloxypropyl)methylsiloxane - Dimethylsiloxane Copolymers

Code	Viscosity	Specific Gravity	Mole % (Acryloxypropyl)Methylsiloxane	Price/100g
UMS-182	80-120	1.01	15-20	\$140.00
UMS-992*	50-125	1.10	99-100	\$110.00


*homopolymer

Refractive Index: UMS-182 = 1.426; UMS-992 = 1.464 UMS-182-CAS: 158061-40-6

(3-Acryloxy-2-Hydroxypropoxypropyl)Methylsiloxane-Dimethylsiloxane Copolymer

Code	Viscosity	Molecular Weight	Mole % (Acryloxy-functional)Methylsiloxane	Price/100g
UCS-052	500-900	7500-8500	4-6	\$78.00

amber liquid

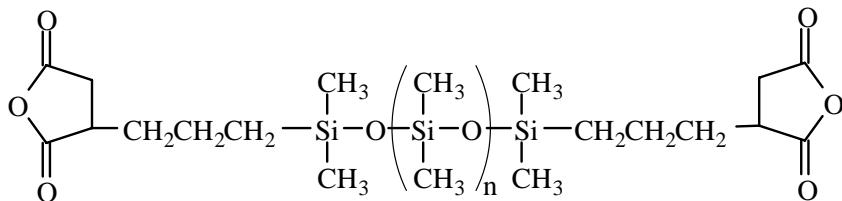
Methacryloxypropyl T-structure Siloxanes

CAS: [67923-18-6] TSCA

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g
RTT-1011	10 - 20	570-620	0.95	\$86.00

contains multiple branch points (>2 methacrylate groups)

Acryloxypropyl T-structure Siloxanes

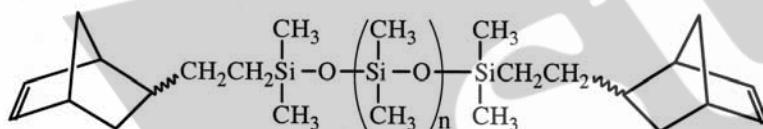

Code	Viscosity	Molecular Weight	Specific Gravity	Refractive Index	Price/100g
UTT-1012	8 - 20	500-900	0.96	1.421	\$110.00

contains multiple branch points (>2 acrylate groups)

Methacrylate functional macromers- see p.39

PLEASE INQUIRE ABOUT BULK QUANTITIES

Anhydride, Bicycloheptenyl, and Carboxylate functional Silicones



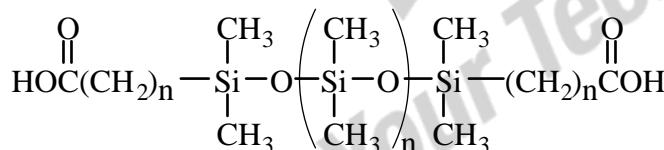
Anhydride functional Silicones

Anhydride functional siloxanes can be reacted directly with amines and epoxides or hydrolyzed to give dicarboxylic acid terminated siloxanes.

Succinic Anhydride Terminated PolyDimethylsiloxane

Code	Viscosity	Molecular Weight	Specific Gravity	Refractive Index	Price/25g	Price/100g
DMS-Z21	75-100	600-800	1.06	1.436	\$80.00	\$260.00

Bicycloheptenyl functional Silicones


Bicycloheptenyl terminated silicones undergo ring-opening metathetic polymerization (ROMP) reactions.

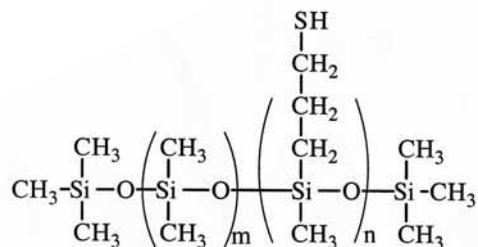
¹Angeletakis, C., et al, US Pat. 6,455,029, 2002

(Bicycloheptenyl)ethyl Terminated PolyDimethylsiloxane

CAS: [945244-93-9]

Code	Viscosity	Molecular Weight	Specific Gravity	Refractive Index	Price/25g	Price/100g
DMS-NB25	400-600	12,000-16,000	0.98	1.406	\$80.00	\$250.00
DMS-NB32	1300-1800	16,000-20,000	0.96	1.406	\$80.00	\$250.00

Carboxylate functional Silicones


Carboxylic acid functional siloxanes are excellent rheology and wetting modifiers for polyesters. When reacted with inorganic bases or amines, they perform as anti-static surfactants and lubricants.

(Carboxyalkyl) Terminated PolyDimethylsiloxane

Code	Viscosity	Molecular Weight	Termination	Specific Gravity	Refractive Index	Price/25g	Price/100g
DMS-B12*	15-30	1000	Carboxydecyl	0.96	1.421	\$58.00	\$190.00
DMS-B25*	450-550	10,000	Carboxydecyl	0.97	1.403	\$52.00	\$170.00
DMS-B31**	800-1200	28,000	Carboxypropyl	0.98		\$52.00	\$170.00

*CAS: [58130-04-4] ** [158465-59-9]

Mercapto and Chloroalkyl Functional Silicones

Mercapto-functional Silicones

Mercapto-functional siloxanes strongly adsorb onto fibers and metal surfaces. High performance toner fluids for reprographic applications are formulated from mercapto-fluids. As components in automotive polishes they are effective rust inhibitors. They act as internal mold release agents for rubber and semi-permanent lubricants for automotive weather stripping. Mercapto-fluids are valuable additives in cosmetic and hair care products. They also undergo radical initiated (including UV) addition to unsaturated resins. Homopolymers are used as cross-linkers for vinylsiloxanes in rapid UV cure fiber optic coatings.¹

¹ U. Mueller et al, J. Macromol. Sci. Pure Appl. Chem., A43, 439, 1996

(Mercaptopropyl)Methylsiloxane - Dimethylsiloxane Copolymers

CAS: [102783-03-9] TSCA

Code	Molecular Weight	Mole % (Mercapto-propyl) MethylSiloxane	Specific Gravity	Refractive Index	Price/100g	Price/1kg
SMS-022	120-180	6000-8000	2 - 3	0.97	1.406	\$22.00
SMS-042	120-170	6000-8000	4 - 6	0.98	1.408	\$22.00
SMS-992*	75-150	4000-7000	99-100	0.97	1.496	\$120.00

*homopolymer, contains cyclics

Chloroalkyl-functional Silicones

Chlororopropyl-functional silicones are moderately stable fluids which are reactive with polysulfides and durable press fabrics. They behave as internal lubricants and plasticizers for a variety of resins where low volatility and flammability resistance is a factor. Chloromethyl terminated polydimethylsiloxanes offer access to block copolymers and surfactants.

(Chloropropyl)Methylsiloxane - Dimethylsiloxane Copolymers

CAS: [70900-20-8] TSCA

Code	Molecular Weight	Mole % (Chloro-propyl) MethylSiloxane	Specific Gravity	Refractive Index	Price/100g	Price/1kg
LMS-152	300-450	7500-10,000	14 - 16	1.01	1.420	\$96.00

Chloromethyl terminated PolyDimethylsiloxane

Code	Molecular Weight	Specific Gravity	Refractive Index	Price/100g	Price/1kg
DMS-L21	100-150	6000-8000	0.98	1.406	\$80.00

Polydimethylsiloxanes with Hydrolyzeable Functionality

Polydimethylsiloxanes with hydrolyzeable functionality react with water to produce silanol terminated fluids of equivalent or higher degrees of polymerization. Polymers with this category of reactivity are almost never directly hydrolyzed. Chlorine and dimethylamine terminated fluids are usually employed in ordered chain extension and block polymer synthesis, particularly urethanes and polycarbonates. Acetoxy and dimethylamine terminated fluids can also be used as unfilled bases for rapid cure RTVs.

Chlorine Terminated PolyDimethylsiloxanes

CAS: [67923-13-1] TSCA

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g	Price/1kg
DMS-K05	3-8	425-650	1.00	\$55.00	\$358.00
DMS-K13	20-50	2000-4000	0.99	\$120.00	
DMS-K26	500-800	15,000-20,000	0.99	\$94.00	

Diacetoxymethyl Terminated PolyDimethylsiloxanes

CAS: [158465-54-4] TSCA

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g
DMS-D33	2000-4000	36,000	0.99	\$64.00

Dimethylamino Terminated PolyDimethylsiloxanes

CAS: [67762-92-9] TSCA

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g
DMS-N05	3 - 8	450-600	0.93	\$160.00
DMS-N12	15 - 30	1550-2000	0.95	\$140.00

hazy liquids

Ethoxy Terminated PolyDimethylsiloxanes

CAS: [70851-25-1] TSCA

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g	Price/1kg
DMS-XE11	5-10	800-900	0.94	\$32.00	\$210.00

TriEthoxysilylethyl Terminated PolyDimethylsiloxanes

CAS: [195158-81-7]

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g	Price/1kg
DMS-XT11	5-10	900-1000	0.95	\$32.00	\$210.00

Methoxy Terminated PolyDimethylsiloxanes

CAS: [68951-97-3] TSCA

Code	Viscosity	Molecular Weight	Specific Gravity	Price/100g	Price/1kg
DMS-XM11	5-12	900-1000	0.94	\$29.00	\$188.00

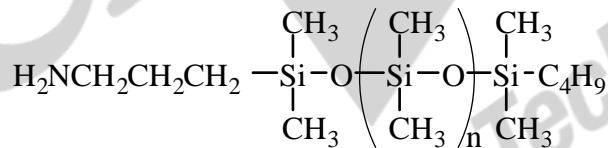
MethoxyMethylsiloxane-Dimethylsiloxane copolymer

methoxy terminated with branch structure

CAS: [68440-84-6] TSCA

Code	Viscosity	Mole % Methoxy	Specific Gravity	Price/100g	Price/1kg
XMS-5025.2*	2-5	10-20	0.83	\$30.00	\$240.00

*20% in isopropanol

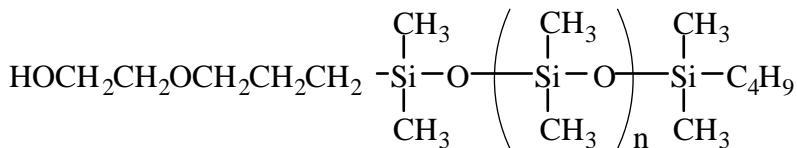

Macromers and Monofunctional Silicones

Macromers are relatively high molecular weight species with a single functional polymerizable group which, although used as monomers, have high enough molecular weight or internal monomer units to be considered polymers. A macromer has one end-group which enables it to act as a monomer molecule, contributing only a single monomeric unit to a chain of the final macromolecule. The term macromer is a contraction of the word macromonomer. Copolymerization of macromers with traditional monomers offers a route to polymers that are usually associated with grafting. Macromers provide a mechanism for introducing pendant groups onto a polymer backbone with conditions consistent with radical, condensation or step-growth polymerization but result in pendant groups that are usually associated with significantly different polymerization conditions and significantly different physical properties than the main polymer chain. Siloxane macromers afford a mechanism for introducing a variety of desirable properties without disrupting the main chain integrity of an organic polymer.

Two general classes of siloxane macromers are available: asymmetric and symmetric. Asymmetric macromers have been the most widely used, but symmetric monomers which open a path for hyper-branched polymers are anticipated to have increased commercial utilization. Macromers are primarily defined by the functional group anticipated to be the reactive functionality in a polymerization. Other modifications usually effect a greater degree of compatibility with the proposed bulk polymer. These include modifying or replacing the most widely used siloxane building block, dimethylsiloxane, with other siloxanes, typically trifluoropropylmethylsiloxane.

MonoAminopropyl Terminated PolyDimethylsiloxanes

MonoAminopropyl Terminated PolyDimethylsiloxanes are most widely used as intermediates for acrylamide functional macromers or as terminating groups for polyamides and polyimides.

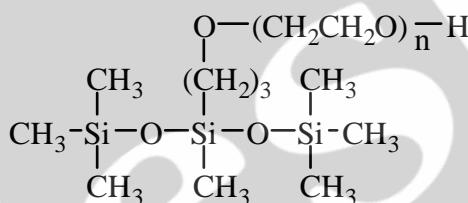

MonoAminopropyl Terminated PolyDimethylsiloxanes - asymmetric

CAS: [80722-63-0]

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-A11	8-12	300-350	1.411	0.92	\$240.00	\$130.00

MonoCarbinol Terminated PolyDimethylsiloxanes

Monocarbinol terminated silicones are pigment dispersants and compatibilizers for a variety of resin systems including epoxies, urethanes and silicones. The action of these materials has been likened to surfactants for non-aqueous systems.

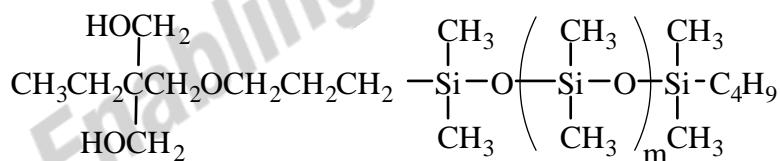


MonoCarbinol Terminated PolyDimethylsiloxanes - asymmetric

CAS: [207308-30-3] TSCA

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-C12	15-20	1000	1.409	0.96	\$80.00	\$480.00
MCR-C18	80-90	5000	1.405	0.97	\$68.00	\$408.00
MCR-C22	250	10000	1.404	0.98	\$60.00	\$360.00

hydroxyethoxypropyl terminated

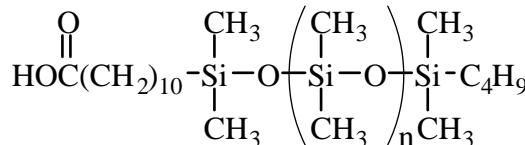

MonoCarbinol Terminated Functional PolyDimethylsiloxanes - symmetric

CAS: [67674-67-3] TSCA

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCS-C13	35-40	550-650		1.02	\$48.00	\$288.00

hydroxypoly(ethyleneoxy) propyl terminated

Mono(dicarbinol) terminated polydimethylsiloxanes are macromers with diol termination on one end of a polydimethylsiloxane chain. In contrast with telechelic carbinol terminated polydimethylsiloxanes, they have the unique ability to react with isocyanates to form urethanes with pendant silicone groups. In this configuration the mechanical strength of the polyurethane is maintained while properties such as hydrophobicity, release and low dynamic coefficient of friction are achieved. For example, a 2 wgt % incorporation of MCR-C61 or MCR-C62 into an aromatic urethane formulation increases water contact angle from 78° to 98°. The reduction of coefficient of friction and increased release of urethanes formulated with diol terminated macromers has led to their acceptance as additives in synthetic leather.

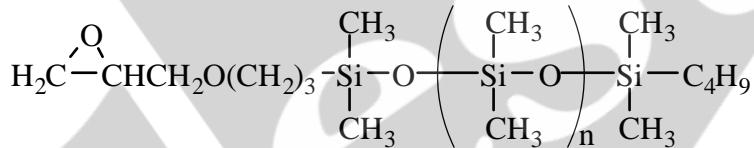

MonoDiCarbinol Terminated PolyDimethylsiloxanes - asymmetric

CAS: [218131-11-4] TSCA

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-C61	50-60	1000	1.417	0.97	\$60.00	\$480.00
MCR-C62	100-125	5000	1.409	0.97	\$60.00	\$480.00

MonoCarboxy Terminated PolyDimethylsiloxanes

Carboxylic acid terminated silicones form esters. They also behave as surfactants.



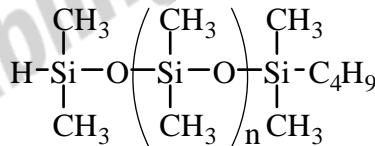
MonoCarboxydecyl Terminated PolyDimethylsiloxanes - asymmetric

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-B12	20	1500	1.415	0.94	\$180.00	

MonoEpoxyTerminated PolyDimethylsiloxanes

Monofunctional epoxy terminated silicones have been utilized as modifiers for aliphatic epoxy systems. They have been used as thermal stress reduction additives to epoxies employed in electronic applications. They have also been acrylated to form UV curable macromers.

Mono (2,3-Epoxy)Propylether Terminated PolyDimethylsiloxanes - asymmetric CAS:[127947-26-6] TSCA


Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-E11	10-15	1000	1.410	0.96	\$186.00	
MCR-E21	120	5000	1.408	0.97	\$186.00	

Mono (2,3-Epoxy)Propylether Functional PolyDimethylsiloxanes - symmetric

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCS-E15	45-55	800-900	1.398	1.09	\$140.00	

MonoHydride Terminated PolyDimethylsiloxanes

Hydride functional macromer can be derivatized or reacted with a variety of olefins by hydrosilylation. They are also modifiers for platinum-cure silicone elastomers.

MonoHydride Terminated PolyDimethylsiloxanes - asymmetric

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-H07	6-8	800-900	1.404	0.96	\$140.00	
MCR-H21	100	4500-5000	1.411	0.96	\$110.00	

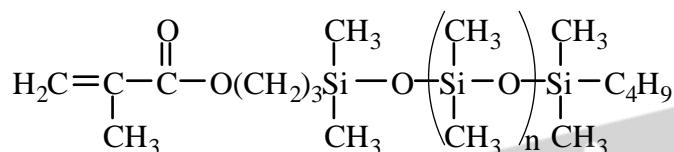
PLEASE INQUIRE ABOUT BULK QUANTITIES

MonoMethacrylate Terminated PolyDimethylsiloxanes

The most widely employed silicone macromers are methacrylate functional. Applications have been reported for hair spray¹, contact lens² and pigment dispersion³. The materials copolymerize smoothly with other acrylate and styrenic monomers as indicated by their reactivity ratios.

Reactivity Ratios: MCR-M11:methylmethacrylate- nm*:1.60

MCR-M22:methylmethacrylate- nm*:2.10

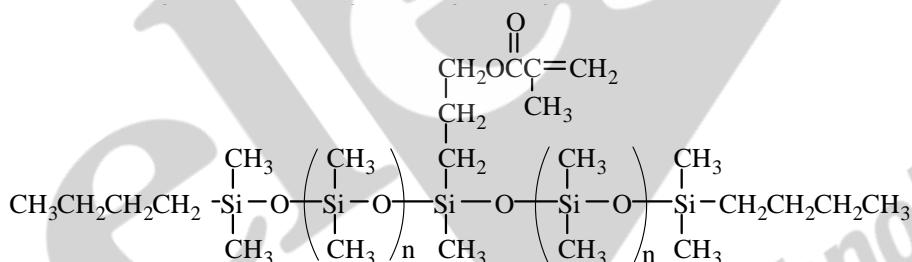

MCR-M11:styrene- 0.26:1.07

MCR-M11:acrylonitrile- 5.4:0.89

r1:r2- rate constants M1M1°/M1M2°: M2M2°:M2M1°

*no meaningful results

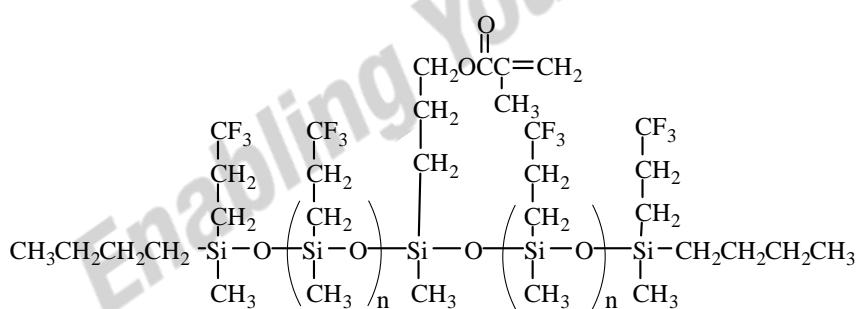
1. US Pats 5166276, 5480634; 2. JP-A-230115/90, US Pat 6,943,203; 3. US Pat 6991,884



MonoMethacryloxypropyl Terminated PolyDimethylsiloxanes - asymmetric

CAS: [146632-07-7] TSCA

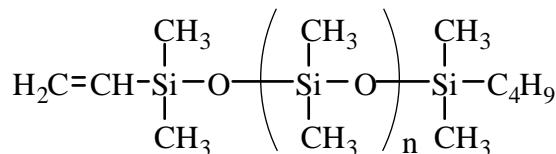
Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-M07	6-9	600-800	1.416	0.96	\$110.00	\$660.00
MCR-M11	10	800-1000	1.411	0.96	\$70.00	\$455.00
MCR-M17	70-80	5000	1.406	0.97	\$90.00	\$585.00
MCR-M22	150-200	10000	1.405	0.97	\$90.00	\$585.00


inhibited with BHT

MonoMethacryloxypropyl Functional PolyDimethylsiloxanes - symmetric

TSCA

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCS-M11	7-9	800-1000	1.417	0.93	\$64.00	\$416.00


MonoMethacryloxypropyl Terminated PolyTrifluoropropylMethylsiloxanes - symmetric

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MFS-M15	45-55	800-1000	1.398	1.09	\$180.00	

inhibited with MEHQ

MonoVinylTerminated PolyDimethylsiloxanes

Monovinyl functional siloxanes are utilized to control modulus and tack in silicone gels, elastomers and coatings.

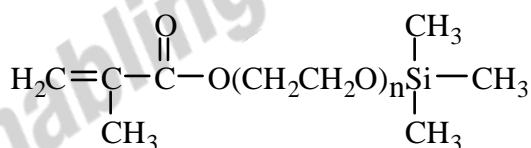
MonoVinyl Terminated PolyDimethylsiloxanes - asymmetric

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCR-V21	80-120	5500-6500	1.403	0.97	\$110.00	\$660.00
MCR-V41	8000-12000	55000-65000	1.404	0.98	\$210.00	

MonoVinyl Functional PolyDimethylsiloxanes - symmetric

TSCA

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
MCS-V12	16-20	1200-1400	1.419	0.97	\$110.00	\$560.00


Silylated Organic Macromers

Silylated macromers provide a route to incorporation of polar monomers into mixtures of non-polar monomers. Subsequent to polymerization, the trimethylsilyl group is removed by hydrolysis.

MonoAllyl-Mono Trimethylsiloxy Terminated Polyethylene Oxide - asymmetric

Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
SIA0479.0	20-25	500	1.456	1.04	\$91.00	

MonoMethacryloxy-Mono Trimethylsiloxy Terminated Polyethylene Oxide - asymmetric

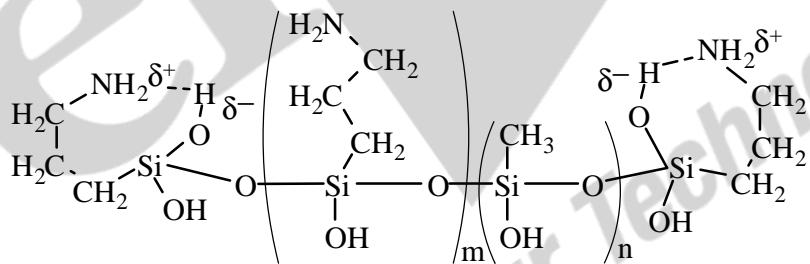
Code	Viscosity	Molecular Weight	Refractive Index	Specific Gravity	Price/100g	Price/1kg
SIM6485.9		400		1.02	\$96.00	

PLEASE INQUIRE ABOUT BULK QUANTITIES

Reactive Silicone Emulsions

Emulsions of reactive silicones are playing an increasing role in formulation technology for water-borne systems. Primary applications for silicone emulsions are in textile finishes, release coatings and automotive polishes. Silanol fluids are stable under neutral conditions and have non-ionic emulsifiers. Aminoalkylalkoxysiloxanes are offered with cationic emulsifiers.

Reactive Silicone Emulsions


emulsifier content: 3-6%

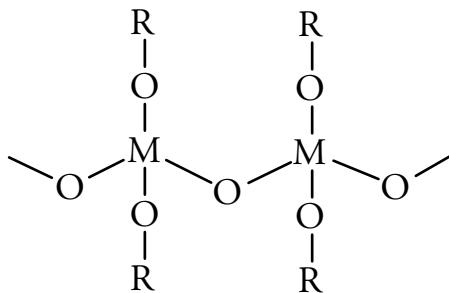
TSCA

Code	silicone class	base fluid viscosity	% solids	emulsion type	Price/100 g	Price/3kg	Price/18kg
DMS-S33M50	silanol	3500	50	nonionic	\$10.00	\$96.00	\$256.00
ATM-1322M50*	diamino/alkoxy	200-300	50	cationic	\$10.00	\$96.00	\$256.00

*0.45mEq/g combined primary and secondary amine

Water-borne Silsesquioxane Oligomers

Water-borne silsesquioxane oligomers act as primers for metals, additives for acrylic latex sealants and as coupling agents for siliceous surfaces.¹ They offer both organic group and silanol functionality. These amphoteric materials are stable in water solutions and, unlike conventional coupling agents, have very low VOCs.


Water-borne Silsesquioxane Oligomers

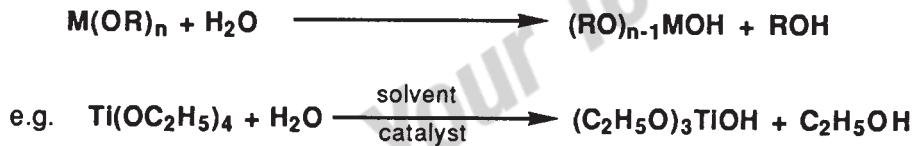
TSCA

Code	Functional Group	Mole %	Molecular Weight	Weight % in solution	Specific Gravity	Viscosity	pH	Price/100g	Price/3kg
WSA-7011	Aminopropyl	65-75	250-500	25-28	1.10	5-15	10-10.5	\$14.00	\$360.00
WSA-9911*	Aminopropyl	100	270-550	22-25	1.06	5-15	10-10.5	\$19.00	\$285.00
WSA-7021	Aminoethylaminopropyl	65-75	370-650	25-28	1.10	5-10	10-11	\$29.00	\$435.00
WSAV-6511**	Aminopropyl, vinyl	60-65	250-500	25-28	1.11	3-10	10-11	\$35.00	\$480.00

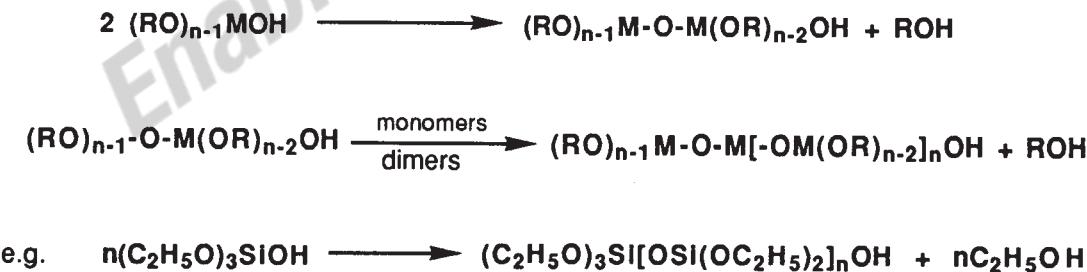
*CAS [29159-37-3] **[207308-27-8]

¹B. Arkles et al, in "Silanes & Other Coupling Agents," ed. K. L. Mittal, p91. VSP, Utrecht, 1992.

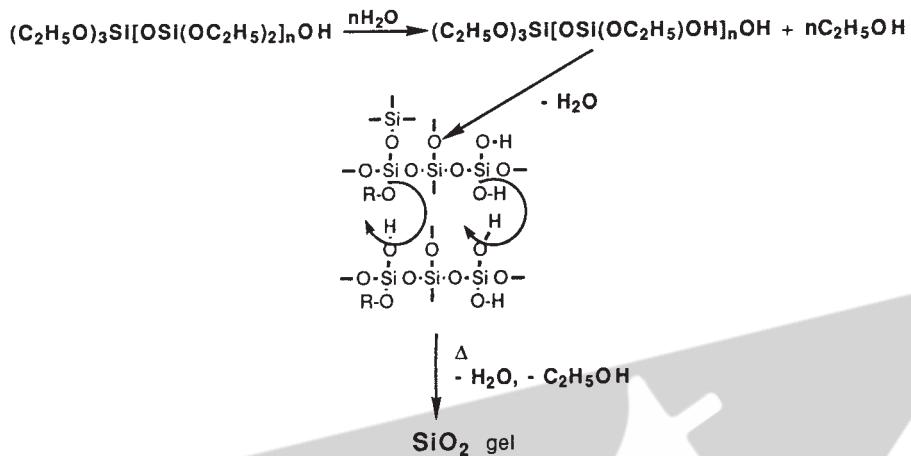
Polymeric Metal Alkoxides

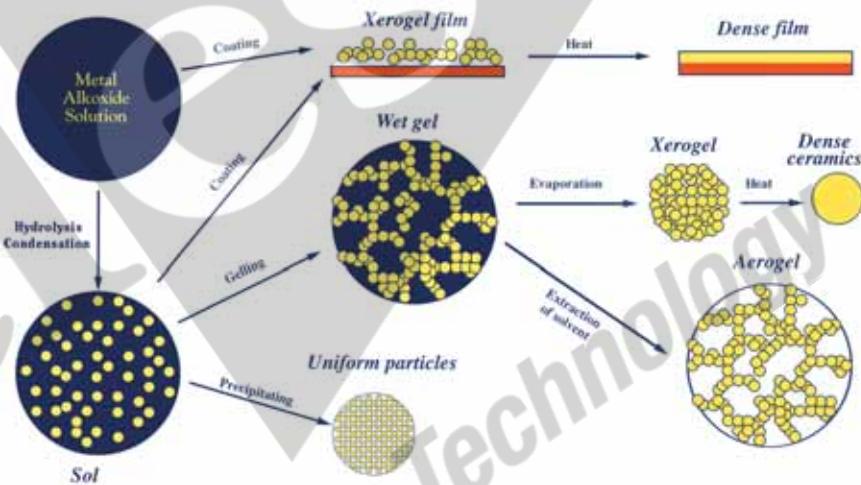

Polymeric metal alkoxides fall into two main classes: oxo-bridged, which can be regarded as partially hydrolyzed metal alkoxides, and alkoxide bridged which can be regarded as organo diester alkoxides. Both classes have the advantages of high metal content and low volatility.

Polymeric metal alkoxides are used primarily as curing agents for 2-part RTVs and in the preparation of binders and coatings including investment casting resins and zinc-rich paints. The latter applications can be considered as special examples of Sol-Gel technology. *Sol-Gel* is a method for preparing specialty metal oxide glasses and ceramics by hydrolyzing a chemical precursor or mixture of chemical precursors that pass sequentially through a solution state and a gel state before being dehydrated to a glass or ceramic.


Sol-Gel Process Technology and Chemistry

Preparation of metal oxides by the sol-gel route proceeds through three basic steps: 1) partial hydrolysis of metal alkoxides to form reactive monomers; 2) the polycondensation of these monomers to form colloid-like oligomers (sol formation); 3) additional hydrolysis to promote polymerization and cross-linking leading to a 3-dimensional matrix (gel formation). Although presented sequentially, these reactions occur simultaneously after the initial processing stage.


MONOMER FORMATION (PARTIAL HYDROLYSIS)


SOL FORMATION (POLYCONDENSATION)

GELATION (CROSS-LINKING)

As polymerization and cross-linking progress, the viscosity of the sol gradually increases until the sol-gel transition point is reached. At this point the viscosity abruptly increases and gelation occurs. Further increases in cross-linking are promoted by drying and other dehydration methods. Maximum density is achieved in a process called densification in which the isolated gel is heated above its glass transition temperature. The densification rate and transition (sintering) temperature are influenced primarily by the morphology and composition of the gel.

REFERENCES

METAL ALKOXIDES AND DIKETONATES

D. C. Bradley, R. C. Mehrotra, D. P. Gaur, Metal Alkoxides, Academic Press, 1978.

R. C. Mehrotra, R. Bohra, D. P. Gaur, Metal β -Diketonates and Allied Derivatives, Academic Press, 1978.

SOL-GEL TECHNOLOGY

C. J. Brinker, G. W. Scherer, Sol-Gel Science, Academic Press, 1990.

C. J. Brinker, D. E. Clark, D. R. Ulrich, Better Ceramics Through Chemistry (Materials Research Society Proceedings 32) Elsevier, 1984

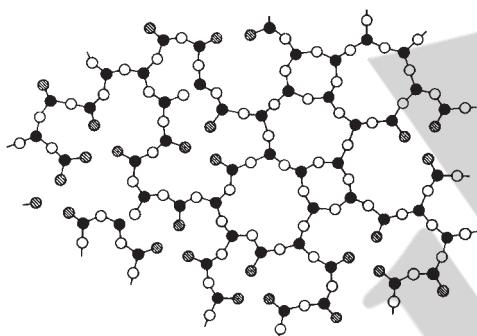
C. J. Brinker, D. E. Clark, D. R. Ulrich, Better Ceramics Through Chemistry II, III, IV (IV add'l ed. B. J. Zelinski) (Materials Research Society Proceedings 73, 121, 180) Mat'l. Res. Soc., 1984, 1988, 1990.

L. L. Hench, D. R. Ulrich, Ultrastructure Processing of Ceramics, Glasses and Composites, Wiley, 1984.

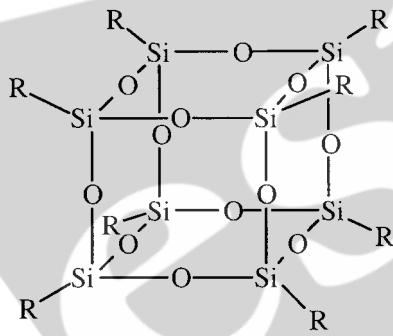
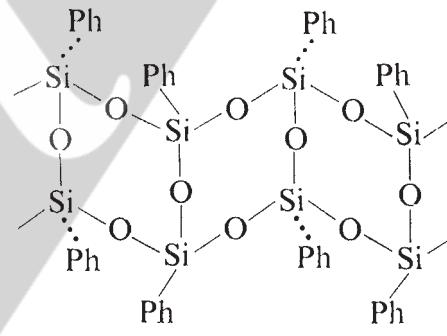
L. L. Hench, D. R. Ulrich, Science of Ceramic Processing, Wiley, 1986

L. C. Klein. Sol-Gel Technology for Thin Films, Fibers, Preforms, and Electronics, Noyes, 1988

Polymeric Metal Alkoxides

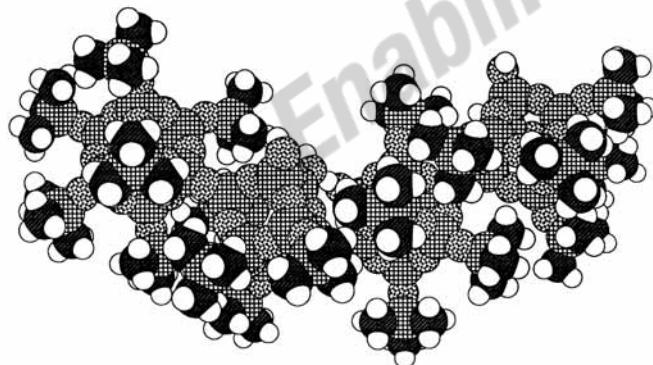

name	metal content	unit M.W.	viscosity, cSt	density
PSI-021 Poly(DIETHOXYSILOXANE) [(C ₂ H ₅ O) ₂ SiO] crosslinker for two-component condensation cure (silanol) RTV's. [68412-37-3] TSCA	20.5-21.5% Si (40-42% SiO ₂ equivalent)	134.20	3-5	1.05-1.07
		100g/\$10.00	2kg/\$84.00	
PSI-023 Poly(DIETHOXYSILOXANE) [(C ₂ H ₅ O) ₂ SiO] base for zinc-rich paints [68412-37-3] TSCA	23.0-23.5% Si (48-52% SiO ₂ equivalent)	134.20	20-35	1.12-1.15
		100g/\$16.00		
PSI-026 Poly(DIMETHOXYSILOXANE) [(CH ₃ O) ₂ SiO] highest SiO ₂ content precursor for sol-gel [25498-02-6] TSCA	26.0-27.0% Si	106.15	6-9	1.14-1.16
		100g/\$32.00	500g/\$128.00	
PSIAL-007 DIETHOXYSILOXANE -s-BUTYLALUMINATE copolymer sol-gel intermediate for aluminum silicates. ¹ 1. J. Boilot in "Better Ceramics Through Chemistry III, p121 [68959-06-8] TSCA	7.5-8.5% Al 6.6-7.6% Si			0.90-1.00
		100g/\$38.00	500g/\$152.00	
PSITI-019 DIETHOXYSILOXANE - ETHYLTITANATE copolymer [(C ₂ H ₅ O) ₂ SiO][(C ₂ H ₅ O) ₂ TiO] employed in formation of titania-silica aerogels. ¹ 1. Miller, J.; et al, J. Mater. Chem. 1995 , 5, 1795.	19.1-19.6% Si 2.1-2.3% Ti	10-25		
		25g/\$40.00	100g/\$130.00	
PSIP0-019 DIETHOXYSILOXANE - ETHYLPHOSPHATE copolymer [(C ₂ H ₅ O) ₂ SiO][(C ₂ H ₅ O)OPO] [51960-53-3]	19.1-19.6% Si 1.4-1.5% P	8-12 R.I.: 1.400		1.09-1.11
		25g/\$40.00	100g/\$130.00	
PAN-040 Poly(ANTIMONY ETHYLENE GLYCOXIDE) [C ₆ H ₁₂ O ₆ Sb ₂] [29736-75-2] TSCA	39.8-40.4% Sb catalyst for transesterification	303.55	solid	
		25g/\$18.00	100g/\$58.00	
PTI-023 Poly(DIBUTYLTITANATE) [(C ₄ H ₉ O) ₂ TiO] [9022-96-2] TSCA	22.0-23.0% Ti stabilized with ~5% ethylene glycol	210.10	3200-3500	1.07-1.10
		100g/\$24.00	500g/\$76.00	
PTI-008 Poly(OCTYLENEGLYCOL-TITANATE) [OCH ₂ CHEt(CH ₂) ₄ OTi(CH ₂ CHEt(CH ₂) ₄ OH) ₂] _n [5575-43-9]	7.5-7.6% Ti contains ~5% free 2-ethyl-1,3-hexanediol, oligomeric flashpoint: 50°C(122°F)	482.54 25g/\$20.00	1700 100g/\$65.00	1.035

PLEASE INQUIRE ABOUT BULK QUANTITIES



PolySilsesquioxanes and T-Resins

$\text{RSiO}_{1.5}$

PolySilsesquioxanes and T-resins are highly crosslinked materials with the empirical formula $\text{RSiO}_{1.5}$. They are named from the organic group and a one and a half (sesqui) stoichiometry of oxygen bound to silicon. T-resin, an alternate designation, indicates that there are three (Tri-substituted) oxygens substituting the silicon. Both designations simplify the complex structures that have now come to be associated with these polymers. A variety of paradigms have been associated with the structure of these resins ranging from amorphous to cubes containing eight silicon atoms, sometimes designated as T_8 structures. Ladder structures have been attributed to these resins, but the current understanding is that in most cases these are hypothetical rather than actual structures.


Amorphous

 T_8 cube

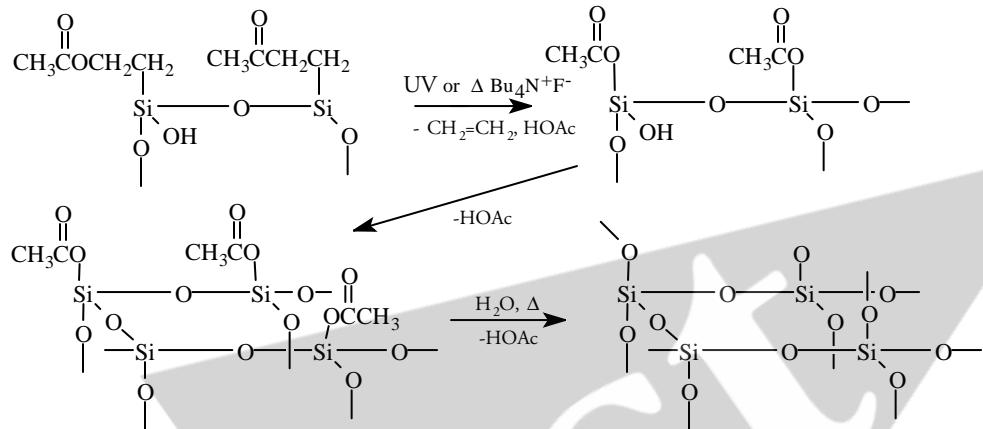
Hypothetical Ladder

Polysilsesquioxanes are used as matrix resins for molding compounds, catalyst supports and coating resins. As dielectric, planarization and reactive ion etch resistant layers, they find application in microelectronics. As abrasion resistant coatings they protect plastic glazing and optics. As preceramic coatings they convert to silicon dioxide, silicon oxycarbide, and silicon carbide depending on the oxidizing conditions for the high temperature thermal conversion.

Polysilsesquioxane resins containing silanols (hydroxyls) can be cured at elevated temperatures. Formulation and catalysis is generally performed at room-temperature or below. At temperatures above 40°C most resins soften and become tacky, becoming viscous liquids by 120°C. The condensation of silanols leads to cure and the resins become tough binders or films. The cure is usually accelerated by the addition of 0.1-0.5% of a catalyst such as dibutyltindiacetate, zinc acetate or zinc 2-ethylhexanoate. The resins can also be dispersed in solvents such as methylethylketone for coating applications.

Polymeric Q resins with cage structure
(according to Wengrovius)

see Vinyl, Silanol & Hydride Q Resins


polySilsesquioxanes and T-resins

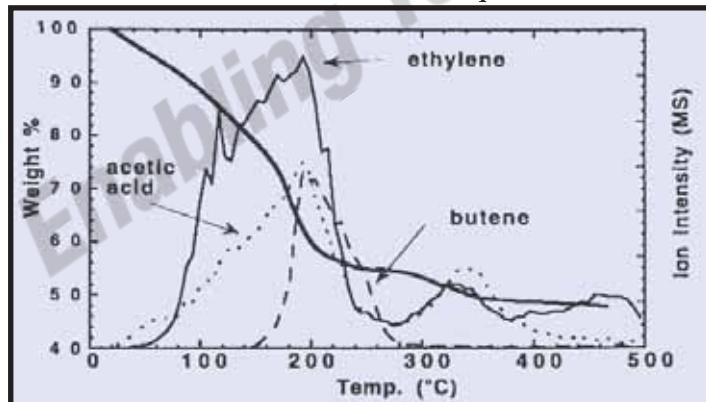
Code	Name	M.W. (approximate)	% (OH)	Refractive Index	Specific Gravity	Price/100g	Price/1kg
SST-3M01	poly(Methylsilsesquioxane) 100% Methyl [68554-70-1] TSCA	7000-8000	4.0-6.0	1.42		\$64.00	\$384.00
SST-3M02	poly(Methylsilsesquioxane) 100% Methyl [68554-70-1] TSCA		2.5-4.0		1.08	\$60.00	\$360.00
SST-3MH1.1	poly(Methyl-Hydridosilsesquioxane) 90% Methyl, 10% Hydride		10% sol'n in tetrahydrofuran		0.91	\$60.00	\$420.00
SST-3P01	poly(Phenylsilsesquioxane) 100% Phenyl [70131-69-0] TSCA	1200-1600	4.5-6.5	1.56		\$72.00	\$485.00
SST-3PM1	poly(Phenyl-Methylsilsesquioxane) 90% Phenyl, 10% Methyl [181186-29-8]			1.55		\$60.00	\$420.00
SST-3PM2	(Phenylsilsesquioxane)-(Dimethylsiloxane) copolymer 70% Phenyl, 30% DiMethyl [73138-88-2] TSCA		3.0-5.0		1.08	\$34.00	\$204.00
SST-3PM4	(40% Phenyl- 45% Methylsilsesquioxane)-(5% Phenylmethylsiloxane) (10% Diphenylsiloxane) tetrapolymer 85% Silsesquioxane, 15% Siloxane [181186-36-7] TSCA	1400-1600	2.0-3.0		1.08	\$60.00	\$420.00
SST-3PP1	poly(Phenyl-Propylsilsesquioxane) 70% Phenyl, 30% Propyl [68037-90-1] TSCA (equivalent weight: 400)	1500-1800	3.5-5.5	1.54	1.25	\$19.00	\$114.00
SST-3PV1	poly(Phenyl-Vinylsilsesquioxane) 90% Phenyl, 10% Vinyl	1000-1300				\$86.00	
SST-3R01	poly(Methacryloxypropylsilsesquioxane)	1000-3000				\$180.00	

Water - borne silsesquioxanes- see p. 41

Thermally & UV Labile Polysilsesquioxanes

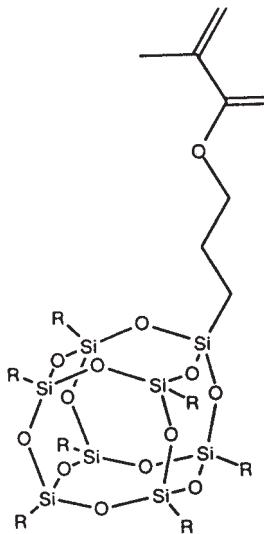
Silsesquioxanes containing β -electron withdrawing groups can be converted to silicon dioxide via elimination and hydrolysis at low temperatures or under UV exposure.¹ The thermal reaction cascade for β -substituted silsesquioxanes leading to SiO_2 -rich structures with a low level of carbon occurs at temperatures above 180°.²

UV exposure results in pure SiO_2 films and suggests that patterning β -substituted silsesquioxane films can lead to direct fabrication of dielectric architectures.


¹ Arkles, B.; Berry, D.; Figge, L.; J. Sol-Gel Sci. & Technol. **1997**, *8*, 465.

² Ezbiansky, K. et al, Mater. Res. Soc. Proc., **2001**, *606*, 251.

Thermally & UV labile polysilsesquioxanes


				Price/100g
SST-BAE1.2	poly(2-Acetoxyethylsilsesquioxane) CAS: 349656-50-4 converts to SiO_2 >300C		18-20% sol'n in methoxypropanol	\$84.00
SST-BCE1.2	poly(2-Chloroethylsilsesquioxane) CAS: 188969-12-2 converts to SiO_2 >300C	800-1400	3.0-5.5 14-16% sol'n in methoxypropanol	\$78.00
SST-BBE1.2	poly(2-Bromoethylsilsesquioxane) converts to SiO_2 by UV	1200-2000	2.0-4.0 14-16% sol'n in methoxypropanol	\$110.00

β -Acetoxyethylsilsesquioxane TGA/MS with 5% $\text{Bu}_4\text{N}^+\text{F}^-$

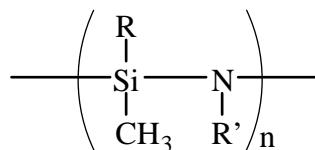
Specialty polysilsesquioxanes

Specialty polysilsesquioxanes can be utilized as models and precursors for silica surfaces and zeolites. If a silicon is removed from a T₈ cube, the open position of the remaining T₇ cube can be substituted with catalytically active metals.¹ T₇ cubes can be converted to functionalized T₈ cubes. Functionalized T₈ cubes are sometimes designated POSS (polyhedral oligomeric silsesquioxane) monomers. Methacrylate T₈ cubes can be copolymerized with a variety of monomers to form homopolymers and copolymers. The polymers may be viewed structurally as nanocomposites or hybrid inorganic-organic polymers. The cube structures impart excellent mechanical properties and high oxygen permeability.² Hydride substituted T₈ cubes can be introduced into vinyl-addition silicone rubbers.³ T₈ cubes in which all silicon atoms are substituted with hydrogen have demonstrated utility as flowable oxide precursors in microelectronics.

¹ Feher, F.; et al, J. Am. Chem. Soc., **1989**, *111*, 1741.

² Lichtenhan, J.; et al, Macromolecules, **1995**, *28*, 8435.

³ Lichtenhan, J.; Comments Inorg. Chem. **1995**, *17*, 115.


Specialty polySilsesquioxanes

SST-2

Code	Name	M.W. (approximate)	% (OH)	Solubility	Price/10g
POSS materials					
SST-A8C42	Allyl substituted poly(Isobutylsilsesquioxane) T8 cube with single substitution, employed in epoxy nanocomposites	851.55		THF, hexane	\$72.00
SST-H8C42	Hydride substituted poly(Isobutylsilsesquioxane) T8 cube with single substitution active in hydrosilylation reactions	817.48		THF, hexane	\$72.00
SST-R8C42	Methacryloxypropyl substituted poly(Isobutylsilsesquioxane) T8 cube with single substitution with polymerizable functionality [307531-94-8]	943.64		THF, hexane	\$96.00
SST-H8H01	poly(Hydridosilsesquioxane) - polymeric T8 with all silicons hydride substituted T8 cube [137125-44-1]	3000-5000	17-20%	hazy solution in methylethylketone; density 0.88	\$140.00
SST-H8HS8	poly(Hydridosilsesquioxane) - T8 with all silicons dimethylsiloxy (HSiMe ₂ O) substituted T8 cube [125756-69-6]	1017.98		see also HQM-107 p.16.	\$114.00
SST-V8V01	poly(Vinylsilsesquioxane) - T8 with all silicons vinyl substituted T8 cube [69655-76-1]	633.04			\$198.00

PLEASE INQUIRE ABOUT BULK QUANTITIES

Polysilazanes and Polysilanes

polySILAZANES -(Si-N)-

Polysilazanes are preceramic polymers primarily utilized for the preparation of silicon nitride for thermal shock resistant refractories and dielectric coatings for microelectronics.

PSN-2M01

poly(1,1-DIMETHYLSILAZANE) telomer

[89535-60-4] Tg: -82° >50 cSt. M.W.: 500-900 D₄²⁰: 1.04

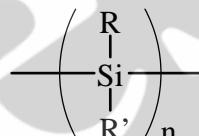
10g/\$94.00

PSN-2M02

poly(1,1-DIMETHYLSILAZANE) crosslinked

>1000 cSt. % char, 700°: 15-20

10g/\$94.00


PSN-2M11

poly(1,2-DIMETHYLSILAZANE)

500-800 cSt.

D₄²⁰: 0.99

10g/\$96.00

polySILANES -(Si-Si)-

Polysilanes have applications as preceramic polymers and photolabile coatings.

Applications for polysilanes with methyl and phenyl group substitution are usually limited to silicon carbide precursors.

PSS-1C01

poly(DICYCLOHEXYLSILANE) solid

1.0g/\$180.00

PSS-1H01

poly(DIHEXYLSILANE)

[207925-46-0]

solid

1.0g/\$90.00

PSS-1M01

poly(DIMETHYLSILANE)

DP: 25-50

MW 1000-3000

[30107-43-8] TSCA Tm: 250-270° (substantial degradation before mp) 10g/\$36.00

PSS-1P01

(50% DIMETHYLSILANE)(50% PHENYLMETHYLSILANE) copolymer

[70158-17-6]

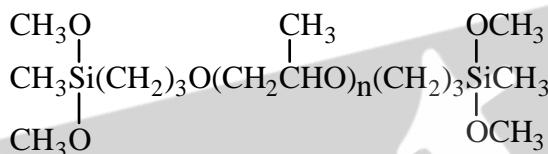
solid

10g/\$110.00

PSS-1P11

poly(PHENYLMETHYL)SILANE

[146088-00-8] Tg: 112-122°


flourescent emission: 360nm

10g/\$140.00

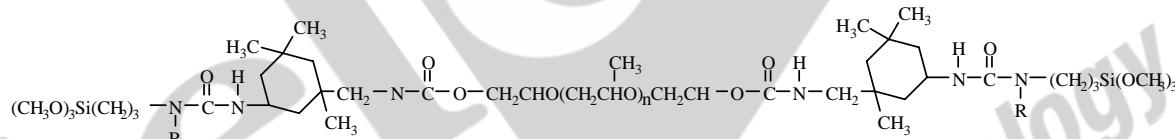
Sibrid® Silicone-Organic Hybrids with Hydrolyzable Functionality

Hybrid organic inorganic polymers containing alkoxy substitutions on silicon allow formulation of moisture cure adhesives, sealants and elastomers with physical properties, including adhesion and strength, which are significantly higher than conventional silicones. Moisture produces a condensation cure analogous to moisture cure silicones. Preferred catalysts are dibutylbispentanedionatetin, dimethyldineodecanoate tin and dibutyldilauryltin at levels of 0.2-1.0%. In order to allow through section cure, maximum thickness is usually 1/4", (5mm).

Polyether

Sibrid® SIB1660.0

BIS[3-METHYLDIMETHOXYSILYL)PROPYL]POLYPROPYLENE OXIDE


visc: 6000-10,000 cSt. M.W. 600-800 density: 1.00

base resin for tin catalyzed moisture-cure RTVs

[75009-80-0] HMIS: 3-1-1-X

100g/\$24.00 2kg/\$288.00

Urethane

Sibrid® U1P-S3010

BIS[TRIMETHOXYSILYL)PROPYL]MODIFIED POLYURETHANE

base resin for tin catalyzed moisture-cure RTVs

visc.: 50,000-80,000 cSt refractive index 1.4550 density 0.99 M.W.: 5000-9000

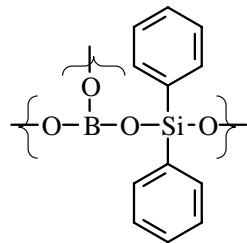
TSCA-PE HMIS: 2-1-1-X

100g/\$26.00 2kg/\$296.00

Starting point formulation for one-part silicone-hybrid sealants

silylated polymer	100 parts
calcium carbonate	40 parts
plasticizer* e.g. diisodecylphthalate	15-50 parts
fumed silica, hydrophobic	3 parts
pigments	2-6 parts
UV stabilizer	2 parts
silane adhesion promoter, e.g. SIT8398.0	2 parts
tin catalyst e.g. SND2950	1 part

(*required for high viscosity or for higher-modulus urethanes)


PLEASE INQUIRE ABOUT BULK QUANTITIES

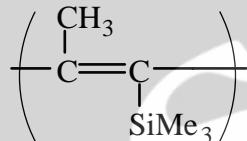
Multi-Functional and Polymeric Silanes

name	MW	bp/mm (mp)	D ₄ ²⁰	n _D ²⁰
Polybutadiene				
SSP-055 —CH ₂ CH(CH ₂ CHCH ₂ CH ₂ CH ₂ — CH ₂ CH ₂ Si(OC ₂ H ₅) ₃	3500-4500 50% in toluene viscosity: 100-200 cSt. coupling agent for EPDM resins [72905-90-9] TSCA HMIS: 2-4-1-X store <5°	100g/\$60.00	0.90	2.0kg/\$780.00
SSP-056 —CH ₂ CH(CH ₂ CHCH ₂ CH ₂ — CH ₂ CH ₂ Si(OC ₂ H ₅) ₃	3500-4500 50% in volatile silicone viscosity: 100-200 cSt. primer coating for silicone rubbers [72905-90-9] TSCA HMIS: 2-3-1-X store <5°	100g/\$68.00	0.93	
SSP-058 —CH ₂ CH(CH ₂ CHCH ₂ CH ₂ — CH ₂ CH ₂ Si(OC ₂ H ₅) ₃	3500-4500 DIETHOXYMETHYLSILYL MODIFIED POLY-1,2-BUTA- DIENE, 50% in toluene viscosity: 75-150 cSt. water tree resistance additive for crosslinkable HDPE cable cladding HMIS: 2-4-1-X store <5°	100g/\$86.00	0.90	
SSP-255 —(CH ₂ CH) _m (CH ₂ CH) _n (CH ₂ CH = CHCH ₂) _p — CH ₂ CH ₂ Si(OC ₂ H ₅) ₃	4500-5500 (30-35% TRIETHOXYSILYLETHYL)ETHYLENE- (35-40% 1,4-BUTADIENE) - (25-30% STYRENE) terpolymer, 50% in toluene HMIS: 2-3-1-X viscosity: 20-30 cSt.	100g/\$86.00		
Polyamine				
SSP-060 	1500-1800 50% in isopropanol visc: 125-175 cSt employed as a coupling agent for polyamides. ¹ in combination with glutaraldehyde immobilizes enzymes. ² 1. Arkles, B; et al, SPI 42nd Composite Inst. Proc., 21-C, 1987 2. Cramer, S; et al, Biotech. & Bioeng. 1989 , 33(3), 344. [136856-91-2] TSCA HMIS: 2-4-1-X	100g/\$28.00	0.92	2.0kg/\$364.00
SSP-065 	1500-1800 50% in isopropanol visc: 100-200 cSt primer for brass [1255441-88-5] TSCA HMIS: 2-4-1-X	100g/\$38.00	0.92	2.0kg/\$494.00
Polyethylene				
SSP-050 —CH ₂ CH ₂ CH ₂ CHCH ₂ CH ₂ — Si(OC ₂ H ₅) ₃	170 - 200 TRIMETHOXYSILYL MODIFIED POLYETHYLENE 0.5-1.2 mole % vinyltrimethoxysilane - ethylene copolymer moisture crosslinkable thermoplastic [35312-82-4] TSCA HMIS: 1-1-1-X	100g/\$36.00	0.927	2.0kg/\$432.00

Developmental

Specialty Silicon Containing Polymers

SSP-040

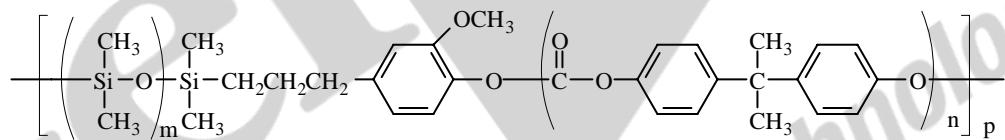

POLY(BORODIPHENYLSILOXANE)

employed in preparation of ceramic fibers.¹1. Yajima, S.; et al, *Nature*, **1977**, *266*, 521.

[70914-15-7] TSCA HMIS: 2-0-0-X

solid, Tg: 95-100°, Tm: 140-1°

25g/\$72.00 100g/\$234.00


SSP-070

POLY(TRIMETHYLSILYL)PROPYNE

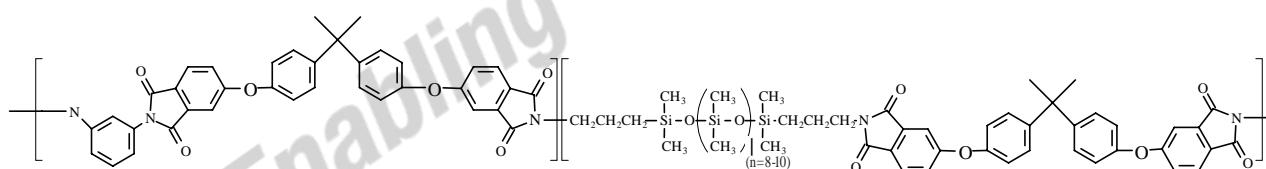
forms viscous 5% solutions in toluene/tetrahydrofuran
high oxygen permeability¹; PO₂/PN₂ = 1.71. Masuda, T.; et al, *J. Am. Chem. Soc.*, **1983**, *105*, 7473.

[87842-32-8] HMIS: 1-1-0-X

10g/\$190.00

SSP-080

(DIMETHYLSILOXANE)(BISPHENOL -A CARBONATE) copolymer


(15 - 20% polydimethylsiloxane)

thermoplastic; tensile strength: 50MPa

[202483-49-6] TSCA HMIS: 1-1-0-X

Vicat mp: 145° density: 1.19

100g/\$120.00

SSP-085

(DIMETHYLSILOXANE)(ETHERIMIDE) copolymer

(35-40% polydimethylsiloxane)phenylenediaminepolyetherimide
thermoplastic; tensile strength: 2800psi Tg: 168°C

[99904-16-2] TSCA HMIS: 1-1-0-X

density: 1.18

100g/\$120.00

PLEASE INQUIRE ABOUT BULK QUANTITIES

Precious Metal Catalysts for Vinyl-Addition Silicone Cure

The recommended starting point for platinum catalysts is 20ppm platinum or 0.05-0.1 parts of complex per 100 parts of vinyl-addition silicone formulation. Rhodium catalyst starting point is 30ppm based on rhodium. Other platinum concentrations are available upon request.

SIP6829.2

PLATINUM CARBONYL CYCLOVINYL METHYL SILOXANE COMPLEX

1.85-2.1% platinum concentration in vinylmethylcyclicsiloxanes
catalyst for Si-H addition to olefins - silicone vinyl addition cure catalyst
employed in elevated temperature curing silicones

[73018-55-0] TSCA 2-2-0-X 5.0g/\$49.00 25g/\$196.00

density: 1.02

SIP6830.3

PLATINUM - DIVINYLTETRAMETHYLDISILOXANE COMPLEX

3-3.5% platinum concentration in vinyl terminated polydimethylsiloxane, neutral
catalyst for Si-H addition to olefins - silicone vinyl addition cure catalyst
employed in room temperature curing silicones

[68478-92-2] TSCA 2-2-0-X 5.0g/\$44.00 25g/\$176.00

density: 0.98

SIP6831.2

PLATINUM - DIVINYLTETRAMETHYLDISILOXANE COMPLEX in xylene

2.1-2.4% platinum concentration flashpoint: 38°C (100°F) density: 0.90
"hot" catalyst employed in room temperature curing silicones

[68478-92-2] TSCA 2-3-0-X 5.0g/\$35.00 25g/\$140.00

SIP6831.2LC

PLATINUM - DIVINYLTETRAMETHYLDISILOXANE COMPLEX in xylene - LOW COLOR

2.1-2.4% platinum concentration flashpoint: 38°C (100°F) density: 0.90
[68478-92-2] TSCA 2-3-0-X 10.0g/\$120.00

SIP6832.2

PLATINUM - CYCLOVINYL METHYL SILOXANE COMPLEX

2-2.5% platinum concentration in cyclic methylvinylsiloxanes, neutral
catalyst for Si-H addition to olefins - silicone vinyl addition cure catalyst
employed in moderate elevated temperature curing silicones

[68585-32-0] TSCA 2-2-0-X 5.0g/\$39.00 25g/\$156.00

density: 1.02

SIP6833.2

PLATINUM-OCTANALDEHYDE/OCTANOL COMPLEX

2.0-2.5% platinum concentration in octanol
catalyst for Si-H addition to olefins - silicone vinyl addition cure catalyst
increases flammability resistance of silicones

[68412-56-6] TSCA 2-3-0-X 5.0g/\$35.00 25g/\$140.00

density: 0.84

INRH078

TRIS(DIBUTYLSULFIDE)RHODIUM TRICHLORIDE

3.0-3.5% rhodium concentration in toluene density: 0.91
catalyst for Si-H addition to olefins - silicone vinyl addition cure catalyst, less susceptible to inhibition
employed in moderately elevated temperature curing silicones

[55425-73-5] TSCA HMIS: 3-4-0-X 5.0g/\$96.00 25g/\$384.00

Poisons for platinum catalysts used in vinyl-addition crosslinking must be avoided. Examples are:

Sulfur compounds (mercaptans, sulfates, sulfides, sulfites, thiols)

and rubbers vulcanized with sulfur will inhibit contacting surfaces)

Nitrogen compounds (amides, amines, imides, nitriles)

Tin compounds (condensation-cure silicones, stabilized PVC)

Modifiers for Vinyl Addition Silicones

The following are the most common materials employed to modify aspects of platinum-cured vinyl-addition silicones. Other materials are found in the Gelest Metal-Organics, Silanes and Silicones catalogs.

Inhibitors and Moderators of Hydrosilylation

Product Code	M.W.	b.p.	density	R.I.
SID4613.0 1,3-DIVINYLTETRAMETHYLDISILOXANE $C_8H_{18}OSi_2$ [2627-95-4] TSCA HMIS: 2-4-0-X	186.40 TOXICITY- oral rat, LD50 >12,500mg/kg flashpoint: 24°C(76°F) 50g/\$22.00	139° (-43°)mp	0.811 500g/\$152.00	1.4123
SIT7900.0 1,3,5,7-TETRAVINYL-1,3,5,7-TETRAMETHYLCYCLOTETRA-SILOXANE $C_{12}H_{24}O_4Si_4$ [27342-69-4] TSCA HMIS: 2-1-0-X	344.66 flashpoint: 112°C (234°F) 25g/\$18.00	110°/10 2kg/\$390.00	0.998	1.4342

Adhesion Promoters

SIA0540.0 ALLYLTRIMETHOXYSILANE $C_6H_{14}O_3Si$ [2551-83-9] TSCA HMIS: 3-2-1-X	162.26 flashpoint: 46°C(115°F) 10g/\$24.00	146-8° 50g/\$96.00	0.963 ²⁵	1.4036 ²⁵
--	--	-----------------------	---------------------	----------------------

Special Crosslinkers

SIP6826.0 PHENYLTRIS(DIMETHYLSILOXY)SILANE $C_{10}H_{26}O_3Si_4$ crosslinker for medium refractive index vinyl addition silicone elastomers [18027-45-7] TSCA HMIS: 2-1-1-X	330.68 flashpoint: 87°C(190°F) 25g/\$34.00	91°/2 2kg/\$752.00	0.942	1.440 ²⁵
---	--	-----------------------	-------	---------------------

SIT7278.0 TETRAKIS(DIMETHYLSILOXY)SILANE $C_8H_{28}O_4Si_5$ crosslinker for Pt cure 2-component RTVs [17802-47-2] TSCA HMIS: 2-2-1-X	328.73 flashpoint: 67°C(153°F) 25g/\$30.00	188-90° 100g/\$98.00	0.886	1.3841
--	--	-------------------------	-------	--------

SIT8372.4 TRIFLUOROPROPYLTRIS(DIMETHYLSILOXY)-SILANE $C_9H_{25}F_3O_3Si_4$	350.63 25g/\$78.00	98-9°/40	0.962	1.3753
--	-----------------------	----------	-------	--------

Diluent Fluids for Gel Hardness and Tactile Response

DMS-T31 polyDIMETHYLSILOXANE, 1000 cSt.	100g/\$10.00	3kg/\$96.00
ALT-143 polyOCTYLMETHYLSILOXANE, 600-1000 cSt.	100g/\$14.00	1kg/\$98.00

PLEASE INQUIRE ABOUT BULK QUANTITIES

Crosslinking Agents for Condensation Cure Silicones

Acetoxy Crosslinkers

Code	M.W.	density		
SID2790.0				
DI-t-BUTOXYDIACETOXY SILANE	292.40	1.0196		
<i>SILICON DI-t-BUTOXIDE DIACETATE</i>	(-4°)mp			
C ₁₂ H ₂₄ O ₆ Si flashpoint: 95°C (203°F) adhesion promoter for silicone RTVs				
[13170-23-5] TSCA HMIS: 3-2-2-X	50g/\$21.00	3kg/\$216.00		

SIE4899.0				
ETHYLTRIACETOXY SILANE	243.28	1.143		
C ₈ H ₁₄ O ₆ Si flashpoint: 106°C(223°F) liquid crosslinker for silicone RTVs	(7-9°)mp			
[17689-77-9] TSCA HMIS: 3-1-1-X	25g/\$10.00	2kg/\$148.00		

SIM6519.0				
METHYLTRIACETOXY SILANE, 95%	220.25	1.175		
C ₇ H ₁₂ O ₆ Si (40°)mp vapor pressure, 94°: 9mm flashpoint: 85°C(185°F) most common cross-linker for condensation cure silicone RTVs				
[4253-34-3] TSCA HMIS: 3-2-1-X	50g/\$19.00	2kg/\$280.00		

SIM6519.2				
METHYLTRIACETOXY SILANE- ETHYLTRIACETOXY SILANE 80:20 BLEND				
liquid crosslinker blend for silicone RTVs				
[4253-34-3]	100g/\$25.00	1kg/\$178.00		

SIV9098.0				
VINYLTRIACETOXY SILANE	232.26	1.167		
C ₈ H ₁₂ O ₆ Si flashpoint: 88°C (190°F)				
[4130-08-9] TSCA HMIS: 3-2-1-X	100g/12.00	2kg/\$164.00		

Alkoxy Crosslinkers

SIB1817.0				
BIS(TRIETHOXYSILYL)ETHANE	354.59	0.957		
<i>HEXAETHOXYDISILETHYLENE</i>				
C ₁₄ H ₃₄ O ₆ Si ₂ additive to formulations that enhances adhesion				
[16068-37-4] TSCA-S HMIS: 3-1-1-X	25g/\$15.00	2kg/\$420.00		

SIM6555.0				
METHYLTRIETHOXYSILANE	178.30	0.8948		
C ₇ H ₁₈ O ₃ Si TOXICITY- oral rat, LD50: 12,500mg/kg				
[2031-67-6] TSCA HMIS: 1-3-1-X	25g/\$10.00	2kg/\$100.00		

SIM6560.0				
METHYLTRIMETHOXYSILANE	136.22	0.955		
C ₄ H ₁₂ O ₃ Si (-78°)mp				
TOXICITY- oral rat, LD50: 12,500mg/kg viscosity: 0.50 cSt flashpoint: 8°C(46°F)				
[1185-55-3] TSCA HMIS: 3-4-1-X	25g/\$10.00	2kg/\$64.00		

Code	M.W.	density		
SIT7110.0				
TETRAETHOXYSILANE	208.33	0.9335		
<i>TETRAETHYLORTHOSILICATE TEOS</i>	(-77°)mp			
C ₈ H ₂₀ O ₄ Si TOXICITY - oral rat, LD50: 6270mg/kg flashpoint 46°C (116°F)				
vapor pressure, 20°: 11.8mm				
[78-10-4] TSCA HMIS: 2-1-1-X	100g/\$11.00	3kg/\$66.00		

SIT7777.0				
TETRA-n-PROPOXYSILANE	264.44	0.9158		
C ₁₂ H ₂₈ O ₄ Si (<-80°)mp				
flashpoint: 95°C (203°F) viscosity: 1.66 cSt				
[682-01-9] TSCA HMIS: 2-2-1-X	100g/\$14.00			

SIV9220.0				
VINYLTIMETHOXYSILANE	148.23	123°	0.970	
C ₅ H ₁₂ O ₃ Si TOXICITY- oral rat, LD50: 11,300mg/kg				
viscosity: 0.6 cSt flashpoint: 23°C (73°F)				
[2768-02-7] TSCA HMIS: 3-4-1-X	100g/\$10.00	2kg/\$96.00		

Oxime Crosslinkers

SIM6590.0				
METHYLTRIS(METHYLETHYLKETOIMINO)-	301.46	0.982		
SILANE <i>METHYLTRIS(2-BUTANONEOXINO)SLANE</i>				
C ₁₃ H ₂₇ N ₃ O ₃ Si TOXICITY- oral rat, LD50: 2000-3000mg/kg				
flashpoint: 90°C (194°F) neutral crosslinker for condensation cure silicones				
[22984-54-9] TSCA HMIS: 2-2-1-X	100g/\$16.00	2kg/\$170.00		

SIV9280.0				
VINYLTIRIS(METHYLETHYLKETOIMINO)-	313.47	0.982		
SILANE				
C ₁₄ H ₂₇ N ₃ O ₃ Si				
[2224-33-1] TSCA HMIS: 3-3-1-X	50g/\$15.00	2kg/\$180.00		

Enoxy (Acetone) Crosslinkers

SIV9209.0				
VINYLTIRISOPROPOENOXYSLANE	226.35	0.934		
C ₁₁ H ₁₈ O ₃ Si				
[15332-99-7] TSCA HMIS: 3-1-1-X	25g/\$19.00	100g/\$62.00		

Amino and Benzamido Crosslinkers

SIB1610.0				
BIS(N-METHYLBENZAMIDO)ETHOXYMETHYL-	356.50			
SILANE, 90%				
C ₁₉ H ₂₄ N ₂ O ₃ Si				
[16230-35-6] TSCA HMIS: 2-1-1-X	25g/\$23.00	100g/\$75.00		

SIT8710.0				
TRIS(CYCLOHEXYLAMINO)METHYLSILANE	337.62			
C ₁₉ H ₃₉ N ₃ Si flashpoint: 110°C(230°F)				
[15901-40-3] TSCA HMIS: 3-2-1-X	25g/\$56.00	100g/\$182.00		

Tin Catalysts for Silicone Condensation Cure RTVs

name	M.W.	d ²⁰	name	M.W.	d ²⁰
SNB1100 BIS(2-ETHYLHEXANOATE)TIN tech-95 <i>TIN II OCTOATE</i> contains free 2-ethylhexanoic acid C ₁₆ H ₃₀ O ₄ Sn TOXICITY - orl rat, LD50: 5,810 mg/kg catalyst for two-component condensation RTV's highest activity, short pot life, does not cause silicone reversion use level: 0.1-0.3% [301-10-0] TSCA HMIS: 2-1-1-X 100g/\$12.00 2.5kg/\$118.00	405.11	1.28	SND3160 DI-n-BUTYLDIACETOXYTIN, tech-95 <i>DIBUTYLTINDIACETATE</i> (-10°)mp C ₁₂ H ₂₄ O ₄ Sn TOXICITY - oral mus, LD50: 109.7mg/kg flashpoint: 143°C (290°F) high activity catalyst for one-component condensation RTV's suitable for acetoxy cure and neutral alkoxy cure use level 0.1-0.3% [1067-33-0] TSCA HMIS: 3-1-1-X 25g/\$10.00 2.5kg/\$198.00	351.01	1.320
SNB1101 BIS(2-ETHYLHEXANOATE)TIN, 50% in polydimethylsiloxane <i>TIN II OCTOATE</i> C ₁₆ H ₃₀ O ₄ Sn predilution results in better compatibility with silicones [301-10-0] TSCA HMIS: 2-1-1-X 100g/\$10.00 1kg/\$76.00	405.11	1.12	SND3260 DI-n-BUTYLDILAURYLtin <i>DIBUTYLTIN DILAURATE</i> C ₃₂ H ₆₄ O ₄ Sn TOXICITY-oral rat, LD50: 175-1600mg/kg flashpoint: 231°C (448°F) viscosity, 25°: 31-4 cSt widely used catalyst for two-component condensation RTV's moderate activity, longer pot life, employed in silicone emulsions FDA allowance as curing catalyst for silicones- 21CFR121.2514 use level: 0.2-0.6% [77-58-7] TSCA HMIS: 2-1-1-X 100g/\$12.00 2.5kg/\$128.00	631.55	1.066
SNB1710 BIS(NEODECANOATE)TIN tech-85 <i>TIN II NEODECANOATE</i> contains free neodecanoic acid C ₂₀ H ₃₈ O ₄ Sn dark viscous liquid catalyst for two-component condensation RTV's slower than SNB1100 does not cause reversion use level: 0.2-0.4% [49556-16-3] TSCA HMIS: 2-1-0-X 50g/\$19.00 250g/\$76.00	461.23	1.16	SND4220 DIMETHYLDINEODECANOATETIN, 95% <i>DIMETHYLTIN DINEODECANOATE</i> C ₂₂ H ₄₄ O ₄ Sn TOXICITY- oral rat, LD50: 1470mg/kg flashpoint: 153°C (307°F) catalyst for one- and two-component condensation RTV's use level: 0.5-0.8% [68928-76-7] TSCA HMIS: 2-1-0-X 50g/\$12.00 4kg/\$336.00	491.26	1.136
SND2930 DI-n-BUTYLBIS(2-ETHYLHEXYLMALEATE)TIN <i>DIBUTYLTIN DIISOCTYLMALEATE</i> C ₃₂ H ₅₆ O ₈ Sn catalyst for one-component RTV's good adhesion to metal substrates [25168-21-2] TSCA HMIS: 2-2-0-X 50g/\$10.00 250g/\$40.00	687.46	1.145	SND4240 DIMETHYLHYDROXY(OLEATE)TIN tech-85 C ₂₀ H ₄₀ O ₃ Sn viscous liquid TOXICITY - oral rat, LD50: 800mg/kg elevated temperature catalyst for condensation cure silicones use level: 0.8-1.2% [43136-18-1] TSCA HMIS: 2-1-0-X 25g/\$12.00 100g/\$40.00	447.23	1.15
SND2950 DI-n-BUTYLBIS(2,4-PENTANEDIONATE)TIN 431.13 1.2 C ₁₈ H ₃₂ O ₄ Sn flashpoint: 91°C (196°F) stable tin ⁺⁴ catalyst with reduced reversion can be used in conjunction with SND3260 catalyst in silicone RTV cures ^{1,2} . 1. T. Lockhardt et al, US Pat. 4,517,337, 1985 2. J. Wengrovius, US Pat. 4,788, 170, 1988 [22673-19-4] TSCA HMIS: 2-2-1-X 25g/\$10.00 2kg/\$160.00			SND4430 DIOCTYLDILAURYLtin tech-95 <i>DIOCTYLTINDILAURATE</i> C ₄₀ H ₈₀ O ₄ Sn TOXICITY - oral rat, LD50: 6450mg/kg flashpoint: 70°C (158°F) low toxicity tin catalyst moderate activity, longer pot life applications in silicone emulsions and solvent based adhesives use level: 0.8-1.3% [3648-18-8] TSCA HMIS: 2-2-1-X 25g/\$10.00 2kg/\$184.00	743.76	0.998
SND3110 DI-n-BUTYLBUTOXYCHLOROTIN, tech-95 341.48 C ₁₂ H ₂₇ ClOSn catalyst for two-component condensation cure silicone RTVs. ¹ 1. Chadho, R.; et al, US Pat. 3,574,785, 1971 [14254-22-9] TSCA HMIS: 3-2-1-X 25g/\$26.00 100g/\$84.00			SNT7955 TIN II OLEATE, tech-85 C ₃₆ H ₆₆ O ₄ Sn contains free oleic acid [31912-84-1] HMIS: 2-1-0-X 100g/\$48.00	581.71	1.06

▶▶▶ PLEASE INQUIRE ABOUT BULK QUANTITIES ▶▶▶

Titanate Catalysts for Alkoxy and Oxime Neutral Cure RTV's

name	MW	b.p./mm(m.p.)	d^{20}	n^{20}
AKT853 TITANIUM DI-n-BUTOXIDE (BIS-2,4-PENTANEDIONATE) C ₁₈ H ₃₂ O ₆ Ti [16902-59-3] TSCA HMIS: 2-3-1-X	392.32 flashpoint: 33°C(91°F)		0.995	
	100g/\$30.00		500g/\$120.00	
AKT855 TITANIUM DIISOPROPOXIDE(BIS-2,4-PENTANEDIONATE), 75% in isopropanol C ₁₆ H ₂₈ O ₆ Ti <i>TZACA</i> miscible: aqueous acetone, most organics [17927-72-9] TSCA HMIS: 2-3-1-X	364.26 TOXICITY- oral rat, LD50: 2,870mg/kg flashpoint: 12°C (54°F) viscosity, 25°: 8-11 cSt	0.992	1.4935	
	100g/\$10.00		2kg/\$60.00	
AKT865 TITANIUM DIISOPROPOXIDE BIS(ETHYL-ACETOACETATE), 95% C ₁₈ H ₃₂ O ₈ Ti [27858-32-8] TSCA HMIS: 2-3-1-X	452.02 TOXICITY - oral rat, LD50: 23,020 mg/kg viscosity, 25°: 45-55 cSt flashpoint: 27°C (80°F)	1.05		
	100g/\$12.00		500g/\$48.00	
AKT867 TITANIUM 2-ETHYLHEXOXIDE <i>TETRAOCTYL TITANATE</i> 8.4-8.6% Ti C ₃₂ H ₆₈ O ₄ Ti catalyst for silicone condensation RTV's [3061-42-5] TSCA HMIS: 2-2-1-X	564.79 viscosity, 25°: 120-130 cSt. flashpoint: 60°C (140°F)	194°/0.25	0.937	1.482
	100g/\$10.00		2kg/\$72.00	
SIT7305.0 TITANIUM TRIMETHYLSILOXIDE <i>TETRAKIS(TRIMETHYLSILOXY)TITANIUM</i> C ₁₂ H ₃₆ O ₄ Si ₄ Ti [15990-66-6] HMIS: 2-2-1-X	404.66 flashpoint: 51°C (124°F)	110°/10	0.900	1.4278
	25g/\$34.00		100g/\$110.00	

Peroxide Catalysts for Heat-Cured Silicone Rubber

SID3352.0 2,4-DICHLOROBENZOYL PEROXIDE, 50% in polydimethylsiloxane	MW: 380.00	density: 1.26
paste consistency silicone compounding temp. <50°; cure temp. >90°; recommended cure temp: 105-120°		
[133-14-2] TSCA HMIS: 3-4-1	100g/\$37.00	500g/\$148.00
SID3379.0 DICUMYL PEROXIDE, 25% in polydimethylsiloxane, 40% w/ calcium carbonate, 35%	MW: 259.29	
silicone compounding temp. <60°; cure temp. >125°; recommended cure temp: 155-175°		
C ₁₈ H ₁₁ O ₂ [80-43-3] TSCA HMIS: 2-3-2-X	100g/\$39.00	500g/\$156.00

Pigments and Coloration

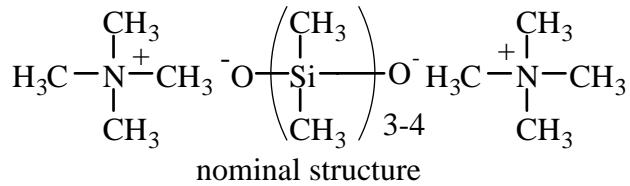
Pigment concentrates in silicone oil are readily dispersed in all silicone cure systems. Pigments are generally mixed at 1-4 parts per hundred with the A part of two part vinyl addition silicones. Silicone coatings generally employ 2-6 parts per hundred.

Pigment Concentrates (dispersed in silicone)

Code	Color	Concentration	Pigment Type	Price/100g	Price/1kg
PGWHT01	White	45%	titanium dioxide	\$30.00	\$180.00
PGRED01	Red	50%	cadmium sulfoselenide	\$30.00	\$180.00
PGORR01	Orange-Red	45%	iron oxide	\$30.00	\$180.00
PGORA01	Orange	15-25%	diarylide pyrazolone	\$30.00	\$180.00
PGYLW01	Yellow	55%	bismuth vanadate	\$30.00	\$180.00
PGGRN01	Green	30-40%	cobalt titanate	\$30.00	\$180.00
PGBLU01	Blue	45%	sodium aluminosulfosilicate	\$30.00	\$180.00
PGFLS01	Flesh - caucasian	50-60%	mixed Fe-Mg-Ti oxides	\$30.00	\$180.00
PGBRN01	Brown	55%	mixed Fe-Cr-Cu oxides	\$30.00	\$180.00
PGBLK01	Black - nonconductive	55%	manganese ferrite	\$30.00	\$180.00
PGBLK02	Black - conductive	45%	carbon	\$30.00	\$180.00
PGXRA01	X-Ray Opaque	35%	barium sulfate	\$30.00	\$180.00

Dyes in silicone oils provide coloration without compromising transparency. The fluids may be used directly in applications such as gauges or as tints for silicone elastomers.

DMS-T21BLU (Blue dye in 100cSt. silicone)	1kg/\$64.00
DMS-T21RED (Red dye in 100cSt. silicone)	1kg/\$64.00


Fillers and Reinforcements

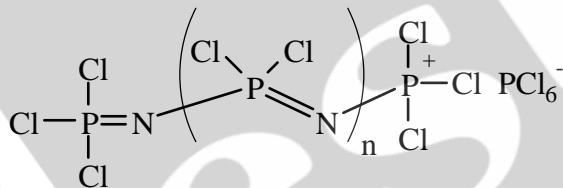
Hexamethyldisilazane treated silica is the preferred filler for silicones. The material is very fine and hydrophobic. Enclosed high-shear compounding equipment is required for adequate dispersion.

Product Code	M.W.	density
SIC2050.0 CALCIUM METASILICATE <i>WOLLASTONITE</i> CaO_3Si weakly reinforcing filler for silicone rubbers- suitable for putty [13983-17-0] TSCA HMIS: 1-0-0-X	116.16 hardness: 4.5-5	2.9
		500g/\$15.00
SIS6962.0 SILICON DIOXIDE, AMORPHOUS HEXAMETHYLDISILAZANE TREATED <i>FUMED SILICA, HMDZ TREATED</i> SiO_2 reinforcing filler for high tear strength silicone rubbers [68909-20-6] TSCA HMIS: 2-0-0-X	60.09 surface area, 200m ² /g ultimate article size: 0.02m	2.2
		500g/\$48.00
		2kg/\$156.00
SIS6964.0 SILICON DIOXIDE, CRYSTALLINE <i>QUARTZ POWDER</i> SiO_2 [7631-86-9] TSCA HMIS: 1-0-0-X	60.09 TOXICITY- oral- rat, LD50: 3160mg/kg hardness: 7.0	2.65 500g/\$10.00 10kg/\$64.00

PLEASE INQUIRE ABOUT BULK QUANTITIES

Polymerization Catalysts

SIT7520.0


TETRAMETHYLAMMONIUM SILOXANOLATE density: 0.98

1.5-2.0% nitrogen as endcapped polydimethylsiloxane

catalyst for ring opening polymerization of cyclic siloxanes at 85-100°; decomposes >120°C with release of trimethylamine

[68440-88-0] TSCA HMIS: 3-3-1-X

25g/\$31.00 100g/\$100.00

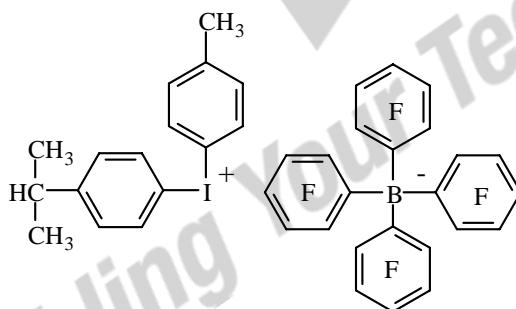
INPH055

POLYPHOSPHONITRILIC CHLORIDE, 95%

 $\text{Cl}_3(\text{NPCl}_2)_n\text{NOCl}_3 \cdot \text{PCl}_6$

mp 60-80°

for silanol oligomer polymerization^{1,2,3}


1. Nitzsche, S.; et al, US Pat. 3,839,388, 1974

2. Nye, S.; et al, US Pat. 5,753,751, 1988

3. Dittrich, U.; et al, US Pat. 5,919,883, 1999

[31550-05-7] HMIS: 3-1-1-X

10g/\$124.00

OMBO037

(p-ISOPROPYLPHENYL)(p-METHYLPHENYL)- mp 120-133°

IODONIUM TETRAKIS(PENTAFLUOROPHENYL) BORATE

UV initiator for cationic polymerizations, e.g. cycloaliphatic epoxides

[178233-72-2] TSCA HMIS: 2-1-0-X

5g/\$48.00 25g/\$192.00

Product Code Definitions for Reactive Fluids

Note: All comonomer % are in mole %

All block copolymer % are in weight %

3 Character Suffix for Functional Termination 4 Character Suffix for Functional Copolymers

Prefix:

DMS = DiMethylSiloxane

Suffix:

1st character describes termination

- A = Amino
- B = CarBoxy
- C = Carbinol
- D = Diacetoxy
- E = Epoxy
- F = TriFluoropropyl
- H = Hydride
- I = Isocyanate
- K = Chlorine (hydrolyzeable)
- L = ChLorine (non-hydrolyzeable)
- M = Methyl
- N = DimethylamiNe
- R = MethacRylate
- S = Mercapto
- T = Trimethylsilyl
- U = Acrylate (UV) or UV stabilizer
- V = Vinyl
- X = MethoXy or EthoXy
- Y = Polar Aprotic (cYano, pYrrolidone)
- Z = Anhydride

2nd character = viscosity in decades, i.e. 10_x

3rd character = viscosity to 1 significant figure

Example:

DMS-V41

Prefix = DMS = DiMethylSiloxane

Suffix = V41 = Vinyl Terminated (10₄ x 1) cSt
or Vinyl Terminated polyDimethylsiloxane, 10,000 cSt

Prefix:

1st character describes non-methyl substitution

- A = Amino
- C = Carbinol
- D = Dimethyl
- E = Epoxy
- EC = Epoxy Cyclohexy
- F = TriFluoropropyl
- H = Hydride
- L = ChLorine (non-hydrolyzeable)
- M = Methyl
- P = Phenyl
- R = MethacRylate
- S = Mercapto
- U = Acrylate (UV) or UV stabilizer
- V = Vinyl
- X = MethoXy or EthoXy
- Y = Polar Aprotic (cYano, pYrrolidone)
- Z = Anhydride

2nd character = substitution type for 1st digit

- B = Block
- D = Difunctional
- M = Monofunctional

3rd character = termination type including block

- E = Ethylene oxide block
- P = Propylene oxide block
- S = Silanol
- V = Vinyl

Suffix:

1st 2 characters = mole % non-dimethyl monomer

3rd character = viscosity in decades, i.e. 10_x

4th character = viscosity to 1 significant figure

Example: PDS – 1615


Prefix = PDS P = Phenyl
D = Di (i.e. Diphenyl)
S = Silanol
Suffix = 1615 1st 2 digits = 16%
2nd 2 digits = (10 1 x 5) cSt
or 16% Diphenylsiloxane-Dimethylsiloxane,
Silanol Teminated, 50 cSt.

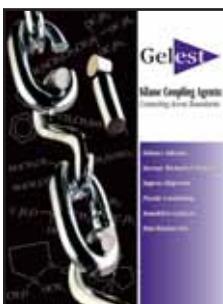
Gelest Product Lines

Silicon Compounds: Silanes & Silicones

Detailed chemical properties and reference articles for over 2000 compounds. The 560 page Gelest catalog of silicon and metal-organic chemistry includes scholarly reviews as well as detailed application information. Physical properties, references, structures, CAS numbers as well as HMIS (Hazardous Material Rating Information) of metal-organic and silicon compounds enable chemists to select materials to meet process and performance criteria.

Metal-Organics for Material & Polymer Technology

The latest Gelest catalog provides many new compounds with applications on optical, microelectronic, diagnostic and materials applications. Highly referenced listings and device applications are presented.


Silicone Fluids - Stable, Inert Media

Design and Engineering properties for conventional silicone fluids as well as thermal, fluorosilicone, hydrophilic and low temperature grades are presented in a 24 page selection guide. The brochure provides data on thermal, rheological, electrical, mechanical and optical properties for silicones. Silicone fluids are available in viscosities ranging from 0.65 to 2,500,000 cSt.

Hydrophobicity, Hydrophilicity and Silane Surface Modification

A description of non-functional silanes that are used to prepare hydrophobic and water repellent surfaces, as well as polar and hydroxylic silanes used to prepare wettable surfaces.

Silane Coupling Agents

Silane coupling agents enhance adhesion, increase mechanical properties of composites, improve dispersion of pigments and fillers and immobilize catalyst and biomaterials. This 48 page brochure describes chemistry, techniques, applications and physical properties of silane coupling agents.

Gelest, Inc.
11 East Steel Rd.
Morrisville, PA 19067
Phone: (215) 547-1015
FAX: (215) 547-2484
www.gelest.com

In Europe:

For commercial quantities contact:

Gelest Ltd
46 Pickering Street
Maidstone
Kent ME15 9RR
United Kingdom
Tel: +44(0) 1622 741115
Fax: +44(0) 1622 741114
e-mail: europe@gelest.com

For research quantities contact:

ABCR GmbH & Co. KG
Im Schlehert
D-76187 Karlsruhe
Germany
Tel: +49 - 721 - 950610
Fax: +49 - 721 - 9506180
e-mail: info@abcr.de
on-line catalog: www.abcr.de

In Japan:

For commercial and research quantities contact:

AZmax Co. Ltd. Tokyo Office
Matsuda Yaesudori Bld F8
1-10-7 Hatchoubori, Chuo-Ku
Tokyo 104-0032
Tel: 81-3-5543-1630
Fax: 81-3-5543-0312
e-mail: sales@azmax.co.jp
on-line catalog: www.azmax.co.jp

In South-East Asia:

For commercial and research quantities contact:

Altus Technologies Pte Ltd
196 Pandan Loop #06-09
Pantech Industrial Complex
Singapore 128384
Tel: (65) 6779 7666
Fax: (65) 6779-7555
www.altus.com.sg